Cargando…

Passivity-Based Model Predictive Control for Mobile Vehicle Motion Planning

Passivity-based Model Predictive Control for Mobile Vehicle Navigation represents a complete theoretical approach to the adoption of passivity-based model predictive control (MPC) for autonomous vehicle navigation in both indoor and outdoor environments. The brief also introduces analysis of the wor...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Tahirovic, Adnan (Autor), Magnani, Gianantonio (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London : Springer London : Imprint: Springer, 2013.
Edición:1st ed. 2013.
Colección:SpringerBriefs in Control, Automation and Robotics,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-1-4471-5049-7
003 DE-He213
005 20220120053225.0
007 cr nn 008mamaa
008 130419s2013 xxk| s |||| 0|eng d
020 |a 9781447150497  |9 978-1-4471-5049-7 
024 7 |a 10.1007/978-1-4471-5049-7  |2 doi 
050 4 |a TJ212-225 
072 7 |a TJFM  |2 bicssc 
072 7 |a GPFC  |2 bicssc 
072 7 |a TEC004000  |2 bisacsh 
072 7 |a TJFM  |2 thema 
082 0 4 |a 629.8312  |2 23 
082 0 4 |a 003  |2 23 
100 1 |a Tahirovic, Adnan.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Passivity-Based Model Predictive Control for Mobile Vehicle Motion Planning  |h [electronic resource] /  |c by Adnan Tahirovic, Gianantonio Magnani. 
250 |a 1st ed. 2013. 
264 1 |a London :  |b Springer London :  |b Imprint: Springer,  |c 2013. 
300 |a XI, 56 p. 20 illus., 17 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Control, Automation and Robotics,  |x 2192-6794 
505 0 |a Introduction -- PB/MPC Navigation Planner -- PB/MPC-RT Planner For Rough Terrains -- Conclusion. 
520 |a Passivity-based Model Predictive Control for Mobile Vehicle Navigation represents a complete theoretical approach to the adoption of passivity-based model predictive control (MPC) for autonomous vehicle navigation in both indoor and outdoor environments. The brief also introduces analysis of the worst-case scenario that might occur during the task execution. Some of the questions answered in the text include: • how to use an MPC optimization framework for the mobile vehicle navigation approach; • how to guarantee safe task completion even in complex environments including obstacle avoidance and sideslip and rollover avoidance; and  • what to expect in the worst-case scenario in which the roughness of the terrain leads the algorithm to generate the longest possible path to the goal. The passivity-based MPC approach provides a framework in which a wide range of complex vehicles can be accommodated to obtain a safer and more realizable tool during the path-planning stage. During task execution, the optimization step is continuously repeated to take into account new local sensor measurements. These ongoing changes make the path generated rather robust in comparison with techniques that fix the entire path prior to task execution. In addition to researchers working in MPC, engineers interested in vehicle path planning for a number of purposes: rescued mission in hazardous environments; humanitarian demining; agriculture; and even planetary exploration, will find this SpringerBrief to be instructive and helpful. 
650 0 |a Control engineering. 
650 0 |a Robotics. 
650 0 |a Automation. 
650 0 |a Automotive engineering. 
650 0 |a Aerospace engineering. 
650 0 |a Astronautics. 
650 1 4 |a Control and Systems Theory. 
650 2 4 |a Control, Robotics, Automation. 
650 2 4 |a Automotive Engineering. 
650 2 4 |a Aerospace Technology and Astronautics. 
700 1 |a Magnani, Gianantonio.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781447150503 
776 0 8 |i Printed edition:  |z 9781447150480 
830 0 |a SpringerBriefs in Control, Automation and Robotics,  |x 2192-6794 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-1-4471-5049-7  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)