Generalized Principal Component Analysis
This book provides a comprehensive introduction to the latest advances in the mathematical theory and computational tools for modeling high-dimensional data drawn from one or multiple low-dimensional subspaces (or manifolds) and potentially corrupted by noise, gross errors, or outliers. This challen...
Clasificación: | Libro Electrónico |
---|---|
Autores principales: | Vidal, René (Autor), Ma, Yi (Autor), Sastry, Shankar (Autor) |
Autor Corporativo: | SpringerLink (Online service) |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
New York, NY :
Springer New York : Imprint: Springer,
2016.
|
Edición: | 1st ed. 2016. |
Colección: | Interdisciplinary Applied Mathematics,
40 |
Temas: | |
Acceso en línea: | Texto Completo |
Ejemplares similares
-
Adaptive Nonlinear System Identification The Volterra and Wiener Model Approaches /
por: Ogunfunmi, Tokunbo
Publicado: (2007) -
Visual Servoing via Advanced Numerical Methods
Publicado: (2010) -
Active Sensor Planning for Multiview Vision Tasks
por: Chen, Shengyong, et al.
Publicado: (2008) -
Algebraically Approximate and Noisy Realization of Discrete-Time Systems and Digital Images
por: Hasegawa, Yasumichi
Publicado: (2009) -
Unified Signal Theory
por: Cariolaro, Gianfranco
Publicado: (2011)