Generalized Principal Component Analysis
This book provides a comprehensive introduction to the latest advances in the mathematical theory and computational tools for modeling high-dimensional data drawn from one or multiple low-dimensional subspaces (or manifolds) and potentially corrupted by noise, gross errors, or outliers. This challen...
Clasificación: | Libro Electrónico |
---|---|
Autores principales: | , , |
Autor Corporativo: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
New York, NY :
Springer New York : Imprint: Springer,
2016.
|
Edición: | 1st ed. 2016. |
Colección: | Interdisciplinary Applied Mathematics,
40 |
Temas: | |
Acceso en línea: | Texto Completo |