Cargando…

The Hypoelliptic Laplacian and Ray-Singer Metrics. (AM-167) /

This book presents the analytic foundations to the theory of the hypoelliptic Laplacian. The hypoelliptic Laplacian, a second-order operator acting on the cotangent bundle of a compact manifold, is supposed to interpolate between the classical Laplacian and the geodesic flow. Jean-Michel Bismut and...

Descripción completa

Detalles Bibliográficos
Autor principal: Bismut, Jean-Michel
Otros Autores: Lebeau, Gilles
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Princeton : Princeton University Press, 2008.
Colección:Book collections on Project MUSE.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a22000004a 4500
001 musev2_33480
003 MdBmJHUP
005 20230905043528.0
006 m o d
007 cr||||||||nn|n
008 100402s2008 nju o 00 0 eng d
010 |z  2008062103 
020 |a 9781400829064 
020 |z 9780691137315 
020 |z 9780691137322 
040 |a MdBmJHUP  |c MdBmJHUP 
100 1 |a Bismut, Jean-Michel. 
245 1 4 |a The Hypoelliptic Laplacian and Ray-Singer Metrics. (AM-167) /   |c Jean-Michel Bismut, Gilles Lebeau. 
264 1 |a Princeton :  |b Princeton University Press,  |c 2008. 
264 3 |a Baltimore, Md. :  |b Project MUSE,   |c 0000 
264 4 |c ©2008. 
300 |a 1 online resource:   |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 0 |a Annals of mathematics studies ;  |v no. 167 
505 0 |a Contents; Introduction; Chapter 1. Elliptic Riemann-Roch-Grothendieck and flat vector bundles; Chapter 2. The hypoelliptic Laplacian on the cotangent bundle; Chapter 3. Hodge theory, the hypoelliptic Laplacian and its heat kernel; Chapter 4. Hypoelliptic Laplacians and odd Chern forms; Chapter 5. The limit as t? +8 and b? 0 of the superconnection forms; Chapter 6. Hypoelliptic torsion and the hypoelliptic Ray-Singer metrics; Chapter 7. The hypoelliptic torsion forms of a vector bundle; Chapter 8. Hypoelliptic and elliptic torsions: a comparison formula. 
505 0 |a Chapter 9. A comparison formula for the Ray-Singer metricsChapter 10. The harmonic forms for b? 0 and the formal Hodge theorem; Chapter 11. A proof of equation (8.4.6); Chapter 12. A proof of equation (8.4.8); Chapter 13. A proof of equation (8.4.7); Chapter 14. The integration by parts formula; Chapter 15. The hypoelliptic estimates; Chapter 16. Harmonic oscillator and the J[sub(0)] function; Chapter 17. The limit of [omitt. 
520 |a This book presents the analytic foundations to the theory of the hypoelliptic Laplacian. The hypoelliptic Laplacian, a second-order operator acting on the cotangent bundle of a compact manifold, is supposed to interpolate between the classical Laplacian and the geodesic flow. Jean-Michel Bismut and Gilles Lebeau establish the basic functional analytic properties of this operator, which is also studied from the perspective of local index theory and analytic torsion. The book shows that the hypoelliptic Laplacian provides a geometric version of the Fokker-Planck equations. The authors give th. 
546 |a In English. 
588 |a Description based on print version record. 
650 1 7 |a Tweede orde.  |0 (NL-LeOCL)078696275  |2 gtt 
650 1 7 |a Partiële differentiaalvergelijkingen.  |2 gtt 
650 1 7 |a Metrische ruimten.  |0 (NL-LeOCL)078589746  |2 gtt 
650 1 7 |a Laplace-operatoren.  |2 gtt 
650 1 7 |a Elliptische differentiaalvergelijkingen.  |2 gtt 
650 7 |a Laplace-Operator  |2 gnd 
650 7 |a Hypoelliptischer Operator  |2 gnd 
650 7 |a Hodge-Theorie  |2 gnd 
650 7 |a Metric spaces.  |2 fast  |0 (OCoLC)fst01018813 
650 7 |a Laplacian operator.  |2 fast  |0 (OCoLC)fst00992600 
650 7 |a Differential equations, Hypoelliptic.  |2 fast  |0 (OCoLC)fst00893466 
650 7 |a MATHEMATICS  |x Geometry  |x General.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Functional Analysis.  |2 bisacsh 
650 6 |a Espaces metriques. 
650 6 |a Laplacien. 
650 6 |a Équations differentielles hypo-elliptiques. 
650 0 |a Metric spaces. 
650 0 |a Laplacian operator. 
650 0 |a Differential equations, Hypoelliptic. 
655 7 |a Electronic books.   |2 local 
700 1 |a Lebeau, Gilles. 
710 2 |a Project Muse.  |e distributor 
830 0 |a Book collections on Project MUSE. 
856 4 0 |z Texto completo  |u https://projectmuse.uam.elogim.com/book/33480/ 
945 |a Project MUSE - Custom Collection