|
|
|
|
LEADER |
00000cam a22000004a 4500 |
001 |
musev2_33480 |
003 |
MdBmJHUP |
005 |
20230905043528.0 |
006 |
m o d |
007 |
cr||||||||nn|n |
008 |
100402s2008 nju o 00 0 eng d |
010 |
|
|
|z 2008062103
|
020 |
|
|
|a 9781400829064
|
020 |
|
|
|z 9780691137315
|
020 |
|
|
|z 9780691137322
|
040 |
|
|
|a MdBmJHUP
|c MdBmJHUP
|
100 |
1 |
|
|a Bismut, Jean-Michel.
|
245 |
1 |
4 |
|a The Hypoelliptic Laplacian and Ray-Singer Metrics. (AM-167) /
|c Jean-Michel Bismut, Gilles Lebeau.
|
264 |
|
1 |
|a Princeton :
|b Princeton University Press,
|c 2008.
|
264 |
|
3 |
|a Baltimore, Md. :
|b Project MUSE,
|c 0000
|
264 |
|
4 |
|c ©2008.
|
300 |
|
|
|a 1 online resource:
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
0 |
|
|a Annals of mathematics studies ;
|v no. 167
|
505 |
0 |
|
|a Contents; Introduction; Chapter 1. Elliptic Riemann-Roch-Grothendieck and flat vector bundles; Chapter 2. The hypoelliptic Laplacian on the cotangent bundle; Chapter 3. Hodge theory, the hypoelliptic Laplacian and its heat kernel; Chapter 4. Hypoelliptic Laplacians and odd Chern forms; Chapter 5. The limit as t? +8 and b? 0 of the superconnection forms; Chapter 6. Hypoelliptic torsion and the hypoelliptic Ray-Singer metrics; Chapter 7. The hypoelliptic torsion forms of a vector bundle; Chapter 8. Hypoelliptic and elliptic torsions: a comparison formula.
|
505 |
0 |
|
|a Chapter 9. A comparison formula for the Ray-Singer metricsChapter 10. The harmonic forms for b? 0 and the formal Hodge theorem; Chapter 11. A proof of equation (8.4.6); Chapter 12. A proof of equation (8.4.8); Chapter 13. A proof of equation (8.4.7); Chapter 14. The integration by parts formula; Chapter 15. The hypoelliptic estimates; Chapter 16. Harmonic oscillator and the J[sub(0)] function; Chapter 17. The limit of [omitt.
|
520 |
|
|
|a This book presents the analytic foundations to the theory of the hypoelliptic Laplacian. The hypoelliptic Laplacian, a second-order operator acting on the cotangent bundle of a compact manifold, is supposed to interpolate between the classical Laplacian and the geodesic flow. Jean-Michel Bismut and Gilles Lebeau establish the basic functional analytic properties of this operator, which is also studied from the perspective of local index theory and analytic torsion. The book shows that the hypoelliptic Laplacian provides a geometric version of the Fokker-Planck equations. The authors give th.
|
546 |
|
|
|a In English.
|
588 |
|
|
|a Description based on print version record.
|
650 |
1 |
7 |
|a Tweede orde.
|0 (NL-LeOCL)078696275
|2 gtt
|
650 |
1 |
7 |
|a Partiële differentiaalvergelijkingen.
|2 gtt
|
650 |
1 |
7 |
|a Metrische ruimten.
|0 (NL-LeOCL)078589746
|2 gtt
|
650 |
1 |
7 |
|a Laplace-operatoren.
|2 gtt
|
650 |
1 |
7 |
|a Elliptische differentiaalvergelijkingen.
|2 gtt
|
650 |
|
7 |
|a Laplace-Operator
|2 gnd
|
650 |
|
7 |
|a Hypoelliptischer Operator
|2 gnd
|
650 |
|
7 |
|a Hodge-Theorie
|2 gnd
|
650 |
|
7 |
|a Metric spaces.
|2 fast
|0 (OCoLC)fst01018813
|
650 |
|
7 |
|a Laplacian operator.
|2 fast
|0 (OCoLC)fst00992600
|
650 |
|
7 |
|a Differential equations, Hypoelliptic.
|2 fast
|0 (OCoLC)fst00893466
|
650 |
|
7 |
|a MATHEMATICS
|x Geometry
|x General.
|2 bisacsh
|
650 |
|
7 |
|a MATHEMATICS
|x Functional Analysis.
|2 bisacsh
|
650 |
|
6 |
|a Espaces metriques.
|
650 |
|
6 |
|a Laplacien.
|
650 |
|
6 |
|a Équations differentielles hypo-elliptiques.
|
650 |
|
0 |
|a Metric spaces.
|
650 |
|
0 |
|a Laplacian operator.
|
650 |
|
0 |
|a Differential equations, Hypoelliptic.
|
655 |
|
7 |
|a Electronic books.
|2 local
|
700 |
1 |
|
|a Lebeau, Gilles.
|
710 |
2 |
|
|a Project Muse.
|e distributor
|
830 |
|
0 |
|a Book collections on Project MUSE.
|
856 |
4 |
0 |
|z Texto completo
|u https://projectmuse.uam.elogim.com/book/33480/
|
945 |
|
|
|a Project MUSE - Custom Collection
|