The Gross-Zagier Formula on Shimura Curves : (AMS-184) /
This comprehensive account of the Gross-Zagier formula on Shimura curves over totally real fields relates the heights of Heegner points on abelian varieties to the derivatives of L-series. The formula will have new applications for the Birch and Swinnerton-Dyer conjecture and Diophantine equations....
| Autor principal: | |
|---|---|
| Otros Autores: | , |
| Formato: | Electrónico eBook |
| Idioma: | Inglés |
| Publicado: |
Princeton :
Princeton University Press,
2012, 2013.
|
| Colección: | Book collections on Project MUSE.
|
| Temas: | |
| Acceso en línea: | Texto completo |
| Sumario: | This comprehensive account of the Gross-Zagier formula on Shimura curves over totally real fields relates the heights of Heegner points on abelian varieties to the derivatives of L-series. The formula will have new applications for the Birch and Swinnerton-Dyer conjecture and Diophantine equations. The book begins with a conceptual formulation of the Gross-Zagier formula in terms of incoherent quaternion algebras and incoherent automorphic representations with rational coefficients attached naturally to abelian varieties parametrized by Shimura curves. |
|---|---|
| Descripción Física: | 1 online resource. |
| ISBN: | 9781400845644 |


