Cargando…

Dynamics in One Complex Variable. (AM-160) : (AM-160) - Third Edition /

This volume studies the dynamics of iterated holomorphic mappings from a Riemann surface to itself, concentrating on the classical case of rational maps of the Riemann sphere. This subject is large and rapidly growing. These lectures are intended to introduce some key ideas in the field, and to form...

Descripción completa

Detalles Bibliográficos
Autor principal: Milnor, John W. (John Willard), 1931-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Princeton : Princeton University Press, 2006.
Edición:3rd ed.
Colección:Book collections on Project MUSE.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a22000004a 4500
001 musev2_30019
003 MdBmJHUP
005 20230905043157.0
006 m o d
007 cr||||||||nn|n
008 110228s2006 nju o 00 0 eng d
020 |a 9781400835539 
020 |z 9780691124872 
020 |z 9780691124889 
040 |a MdBmJHUP  |c MdBmJHUP 
100 1 |a Milnor, John W.  |q (John Willard),  |d 1931- 
245 1 0 |a Dynamics in One Complex Variable. (AM-160) :   |b (AM-160) - Third Edition /   |c by John Milnor. 
250 |a 3rd ed. 
264 1 |a Princeton :  |b Princeton University Press,  |c 2006. 
264 3 |a Baltimore, Md. :  |b Project MUSE,   |c 0000 
264 4 |c ©2006. 
300 |a 1 online resource:   |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 0 |a Annals of mathematics studies ;  |v no. 160 
505 0 |a Riemann surfaces -- Iterated holomorphic maps -- Local fixed point theory -- Periodic points: global theory -- Structure of the Fatou set -- Using the Fatou set to study the Julia set. 
520 |a This volume studies the dynamics of iterated holomorphic mappings from a Riemann surface to itself, concentrating on the classical case of rational maps of the Riemann sphere. This subject is large and rapidly growing. These lectures are intended to introduce some key ideas in the field, and to form a basis for further study. The reader is assumed to be familiar with the rudiments of complex variable theory and of two-dimensional differential geometry, as well as some basic topics from topology. This third edition contains a number of minor additions and improvements: A historical survey has been added, the definition of Lattes map has been made more inclusive, and the ecalle-Voronin theory of parabolic points is described. The residu iteratif is studied, and the material on two complex variables has been expanded. Recent results on effective computability have been added, and the references have been expanded and updated. Written in his usual brilliant style, the author makes difficult mathematics look easy. This book is a very accessible source for much of what has been accomplished in the field. 
546 |a In English. 
588 |a Description based on print version record. 
650 7 |a Holomorphe Abbildung  |2 gnd 
650 7 |a Riemannsche Fläche  |2 gnd 
650 7 |a Fatou-Menge  |2 gnd 
650 7 |a Julia-Menge  |2 gnd 
650 7 |a Fixpunkttheorie  |2 gnd 
650 7 |a Iterierte Abbildung  |2 gnd 
650 7 |a Riemann surfaces.  |2 fast  |0 (OCoLC)fst01097801 
650 7 |a Holomorphic mappings.  |2 fast  |0 (OCoLC)fst00958954 
650 7 |a Functions of complex variables.  |2 fast  |0 (OCoLC)fst00936116 
650 7 |a MATHEMATICS  |x General.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Complex Analysis.  |2 bisacsh 
650 6 |a Surfaces de Riemann. 
650 6 |a Applications holomorphes. 
650 6 |a Fonctions d'une variable complexe. 
650 0 |a Riemann surfaces. 
650 0 |a Holomorphic mappings. 
650 0 |a Functions of complex variables. 
655 7 |a Electronic books.   |2 local 
710 2 |a Project Muse.  |e distributor 
830 0 |a Book collections on Project MUSE. 
856 4 0 |z Texto completo  |u https://projectmuse.uam.elogim.com/book/30019/ 
945 |a Project MUSE - Custom Collection