Cargando…

Mining the Biomedical Literature /

A concise introduction to fundamental methods for finding and extracting relevant information from the ever-increasing amounts of biomedical text available. The introduction of high-throughput methods has transformed biology into a data-rich science. Knowledge about biological entities and processes...

Descripción completa

Detalles Bibliográficos
Autores principales: Shatkay, Hagit (Autor), Craven, Mark (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge, Mass. : MIT Press, 2012.
Colección:Book collections on Project MUSE.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a22000004a 4500
001 musev2_19758
003 MdBmJHUP
005 20230905042122.0
006 m o d
007 cr||||||||nn|n
008 120820s2012 mau o 00 0 eng d
010 |z  2011047751 
020 |a 9780262305167 
020 |z 0262017695 
020 |z 026230516X 
020 |z 9780262017695 
035 |a (OCoLC)806959457 
040 |a MdBmJHUP  |c MdBmJHUP 
100 1 |a Shatkay, Hagit,  |e author. 
245 1 0 |a Mining the Biomedical Literature /   |c Hagit Shatkay and Mark Craven. 
264 1 |a Cambridge, Mass. :  |b MIT Press,  |c 2012. 
264 3 |a Baltimore, Md. :  |b Project MUSE,   |c 2012 
264 4 |c ©2012. 
300 |a 1 online resource (150 pages):   |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 0 |a Computational molecular biology 
505 0 |a Fundamental Concepts in Biomedical Text Analysis -- Information Retrieval -- Information Extraction -- Evaluation -- Putting it All Together : Current Applications and Future Directions. 
505 0 |a Intro -- Contents -- Acknowledgments -- Chapter 1. Introduction -- 1.1. What is biomedical text mining? -- 1.2. Example: The BRCA1 Pathway -- 1.3. Challenges in biomedical text mining -- Chapter 2. Fundamental Concepts in Biomedical Text Analysis -- 2.1. Biomedical text sources -- 2.2. Natural language concepts -- 2.3. Challenges in natural language processing -- 2.4. Natural language processing tasks -- 2.5. Biomedical vocabularies and ontologies -- 2.6. Summary -- Chapter 3. Information Retrieval -- 3.1. Example : The BRCA1 Pathway (Revisited) -- 3.2. Indexing, keywords, and Boolean queries -- 3.3. Similarity queries and the Vector Model -- 3.4. Beyond cosine-based similarity -- 3.5. Text categorization -- 3.6. Summary -- Chapter 4. Information Extraction -- 4.1. Named-entity recognition -- 4.2. Normalization of named entities -- 4.3. Relation extraction -- 4.4. Summary -- Chapter 5. Evaluation -- 5.1. Performance evaluation in text retrieval and extraction -- 5.2. Evaluation measures -- 5.3. Shared evaluation tasks -- 5.4. Summary -- Chapter 6 Putting It All Together : Current Applications and Future Directions -- 6.1. Recognizing and linking bioentities -- 6.2. Supporting database curation -- 6.3. Text as data : A gateway to discovery and prediction -- 6.4. Future directions -- References -- Index. 
520 |a A concise introduction to fundamental methods for finding and extracting relevant information from the ever-increasing amounts of biomedical text available. The introduction of high-throughput methods has transformed biology into a data-rich science. Knowledge about biological entities and processes has traditionally been acquired by thousands of scientists through decades of experimentation and analysis. The current abundance of biomedical data is accompanied by the creation and quick dissemination of new information. Much of this information and knowledge, however, is represented only in text form - in the biomedical literature, lab notebooks, Web pages, and other sources. Researchers' need to find relevant information in the vast amounts of text has created a surge of interest in automated text-analysis. In this book, Hagit Shatkay and Mark Craven offer a concise and accessible introduction to key ideas in biomedical text mining. The chapters cover such topics as the relevant sources of biomedical text ; text-analysis methods in natural language processing ; the tasks of information extraction, information retrieval, and text categorization ; and methods for empirically assessing text-mining systems. Finally, the authors describe several applications that recognize entities in text and link them to other entities and data resources, support the curation of structured databases, and make use of text to enable further prediction and discovery. 
588 |a Description based on print version record. 
650 7 |a Medical literature  |x Data processing  |2 fast  |0 (OCoLC)fst01014351 
650 7 |a Medical informatics  |2 fast  |0 (OCoLC)fst01014175 
650 7 |a Information storage and retrieval systems  |x Medicine  |2 fast  |0 (OCoLC)fst00972956 
650 7 |a Information storage and retrieval systems  |x Biology  |2 fast  |0 (OCoLC)fst00972808 
650 7 |a Information retrieval  |2 fast  |0 (OCoLC)fst00972619 
650 7 |a Data mining  |2 fast  |0 (OCoLC)fst00887946 
650 7 |a Content analysis (Communication)  |2 fast  |0 (OCoLC)fst00876639 
650 7 |a Bioinformatics  |2 fast  |0 (OCoLC)fst00832181 
650 7 |a TECHNOLOGY & ENGINEERING  |x Biomedical.  |2 bisacsh 
650 7 |a MEDICAL  |x Lasers in Medicine.  |2 bisacsh 
650 7 |a MEDICAL  |x Family & General Practice.  |2 bisacsh 
650 7 |a MEDICAL  |x Biotechnology.  |2 bisacsh 
650 7 |a MEDICAL  |x Allied Health Services  |x Medical Technology.  |2 bisacsh 
650 7 |a information retrieval.  |2 aat 
650 7 |a subject analysis.  |2 aat 
650 6 |a Recherche de l'information. 
650 6 |a Analyse de contenu (Communication) 
650 6 |a Systemes d'information  |x Biologie. 
650 6 |a Systemes d'information  |x Medecine. 
650 6 |a Bio-informatique. 
650 6 |a Medecine  |x Informatique. 
650 6 |a Exploration de donnees (Informatique) 
650 6 |a Biologie  |x Documentation  |x Informatique. 
650 6 |a Medecine  |x Documentation  |x Informatique. 
650 2 |a Computational Biology 
650 2 2 |a Medical Informatics 
650 2 2 |a Information Storage and Retrieval 
650 1 2 |a Data Mining 
650 0 |a Information retrieval. 
650 0 |a Content analysis (Communication) 
650 0 |a Information storage and retrieval systems  |x Biology. 
650 0 |a Information storage and retrieval systems  |x Medicine. 
650 0 |a Bioinformatics. 
650 0 |a Medical informatics. 
650 0 |a Data mining. 
650 0 |a Biological literature  |x Data processing. 
650 0 |a Medical literature  |x Data processing. 
655 7 |a Electronic books.   |2 local 
700 1 |a Craven, Mark,  |e author. 
710 2 |a Project Muse.  |e distributor 
830 0 |a Book collections on Project MUSE. 
856 4 0 |z Texto completo  |u https://projectmuse.uam.elogim.com/book/19758/ 
945 |a Project MUSE - Custom Collection 
945 |a Project MUSE - 2012 Complete