|
|
|
|
LEADER |
00000cam a22000004a 4500 |
001 |
musev2_107993 |
003 |
MdBmJHUP |
005 |
20230905054234.0 |
006 |
m o d |
007 |
cr||||||||nn|n |
008 |
100323s1951 onc o 00 0 eng d |
020 |
|
|
|a 9781487599966
|
020 |
|
|
|z 9781487592042
|
035 |
|
|
|a (OCoLC)1389340583
|
040 |
|
|
|a MdBmJHUP
|c MdBmJHUP
|
100 |
1 |
|
|a Jeffery, R. L.
|
245 |
1 |
4 |
|a The Theory of Functions of a Real Variable (Second Edition) /
|c by R.L. Jeffery.
|
264 |
|
1 |
|a Toronto :
|b University of Toronto Press,
|c 1951.
|
264 |
|
3 |
|a Baltimore, Md. :
|b Project MUSE,
|c 2023
|
264 |
|
4 |
|c ©1951.
|
300 |
|
|
|a 1 online resource (244 pages).
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
0 |
|
|a Mathematical expositions ;
|v no. 6
|
505 |
0 |
|
|a Cover -- CONTENTS -- INTRODUCTION -- 0.1. The positive integers -- 0.2. The fundamental operations on integers -- 0.3. The rational numbers -- 0.4. The irrational numbers -- 0.5. The real number system -- Problems -- I. SETS, SEQUENCES, AND FUNCTIONS -- 1.1. Bounds and limits of sets and sequences -- 1.2. Functions and their properties -- 1.3. Sequences of functions and uniform convergence -- Problems -- II. METRIC PROPERTIES OF SETS -- 2.1. Notation and definitions -- 2.2. Descriptive properties of sets -- 2.3. Metric properties of sets
|
505 |
0 |
|
|a 2.4. Measurability and measurable sets2.5. Further descriptive properties of sets -- 2.6. Measure-preserving transformations and non-measurable sets -- 2.7. A non-measurable set -- Problems -- III. THE LEBESGUE INTEGRAL -- 3.1. Measurable functions -- 3.2. The Lebesgue integral -- 3.3. The Riemann integral -- 3.4. The extension of the definition of the Lebesgue integral to unbounded functions -- 3.5. Further properties of measurable functions -- Problems -- IV. PROPERTIES OF THE LEBESGUE INTEGRAL -- 4.1. Notation and conventions
|
505 |
0 |
|
|a 4.2. Properties of the Lebesgue integral4.3. Definitions of summability and their extension to unbounded sets -- 4.4. The integrability of sequences -- 4.5. Integrals containing a parameter -- 4.6. Further theorems on sequences of functions -- 4.7. The ergodic theorem -- Problems -- V. METRIC DENSITY AND FUNCTIONS OF BOUNDED VARIATION -- 5.1. The Vitali covering theorem -- 5.2. Metric density of sets -- 5.3. Approximate continuity -- 5.4. Functions of bounded variation -- 5.5. Upper and lower derivatives -- 5.6. Functions of sets
|
505 |
0 |
|
|a 5.7. The summability of the derivative of a function of bounded variation5.8. Functions of sets -- Problems -- VI. THE INVERSION OF DERIVATIVES -- 6.1. Functions defined by integrals, F(x) = L(f, a, x) -- 6.2. The inversion of derivatives which are not summable -- 6.3. The integrals of Denjoy and other generalized integrals -- 6.4. Descriptive definitions of generalized integrals -- Problems -- VII. DERIVED NUMBERS AND DERIVATIVES -- 7.1. Derivatives or derived numbers -- 7.2. The Weierstrass non-differentiable function
|
505 |
0 |
|
|a 7.3. A function which has no unilateral derivative7.4. The derived numbers of arbitrary functions defined on arbitrary sets -- 7.5. Approximate derived numbers over arbitrary sets -- 7.6. Approximate derived numbers of measurable functions, and relations between arbitrary functions and measurable functions -- VIII. THE STIELTJES INTEGRAL -- 8.1. The Riemann-Stieltjes Integral -- 8.2. Properties of the Riemann-Stieltjes integral -- 8.3. Interval functions and measure functions -- 8.4. Linear functionals -- BIBLIOGRAPHY -- INDEX OF SUBJECTS -- A -- B -- C -- D
|
520 |
|
|
|a This textbook leads the reader by easy stages through the essential parts of the theory of sets and theory of measure to the properties of the Lebesgue integral.
|
588 |
|
|
|a Description based on print version record.
|
650 |
|
7 |
|a Functions of real variables.
|2 fast
|0 (OCoLC)fst00936120
|
650 |
|
7 |
|a MATHEMATICS
|x Mathematical Analysis.
|2 bisacsh
|
650 |
|
7 |
|a MATHEMATICS
|x Calculus.
|2 bisacsh
|
650 |
|
6 |
|a Fonctions de variables reelles.
|
650 |
|
0 |
|a Functions of real variables.
|
655 |
|
7 |
|a Electronic books.
|2 local
|
710 |
2 |
|
|a Project Muse.
|e distributor
|
830 |
|
0 |
|a Book collections on Project MUSE.
|
856 |
4 |
0 |
|z Texto completo
|u https://projectmuse.uam.elogim.com/book/107993/
|
945 |
|
|
|a Project MUSE - Custom Collection
|