Turquoise hydrogen : an effective pathway to decarbonization and value added carbon materials /
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Cambridge, MA :
Academic Press,
2023.
|
Edición: | First edition. |
Colección: | Advances in chemical engineering ;
61. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Intro
- Turquoise Hydrogen
- Copyright
- Contents
- Contributors
- Chapter One: Catalytic and non-catalytic chemical kinetics of hydrocarbons cracking for hydrogen and carbon materials pro ...
- 1. Introduction
- 2. Mechanism of thermal pyrolysis of hydrocarbons
- 2.1. Core mechanism-CH4 pyrolysis
- 2.2. Reaction classes and reference kinetic parameters for hydrocarbon pyrolysis
- 2.2.1. Chain initiation reactions
- 2.2.2. Propagation
- 2.2.3. Termination
- 2.2.4. Molecular reactions
- 2.2.5. Gas phase evolution and formation of the first aromatic ring
- 2.3. PAHs and SOOT formation mechanism
- 2.3.1. Monocyclic (MAHs) and polycyclic aromatic hydrocarbons (PAHs)
- 2.3.2. Amorphous carbonaceous particles (soot)
- 2.3.2.1. Discrete sectional method for soot modeling
- 3. Catalytic pyrolysis of hydrocarbons
- 3.1. Fouling
- 3.2. CVD/CVI process for the formation of pyrolytic carbon materials
- 3.2.1. Heterogeneous detailed kinetic models
- 3.3. Synthesis of diamond
- 3.3.1. Kinetic mechanism of diamond growth
- 3.4. CNT synthesis and kinetic models
- 3.4.1. Kinetic mechanism for CNTs growth
- 4. Conclusions and outlook
- References
- Chapter Two: Fluid dynamics aspects and reactor scale simulations of chemical reactors for turquoise hydrogen production
- 1. Introduction
- 2. Modeling approaches
- 2.1. Computational fluid dynamic approaches
- 2.1.1. Single-phase flow
- 2.1.2. Euler-Lagrange model: Fluid-particles flow
- 2.1.3. Volume-of-fluid: Two-phase flow
- 2.1.4. Euler-Euler model: Multi-phase flow
- 2.1.5. Additional modeling tools
- 2.1.5.1. Porous media model
- 2.1.5.2. Turbulence models
- 2.2. Macroscopic reactor models
- 3. Models for non-catalytic methane pyrolysis
- 3.1. Solar reactors
- 3.2. Tubular flow reactors
- 3.3. Stirred flow reactors
- 3.4. Plasma reactors
- 3.5. Molten metal reactors.
- 4. Models for catalytic methane pyrolysis
- 4.1. Chemical vapor deposition reactors
- 4.2. Fluidized bed reactors
- 4.3. Catalytic molten metal reactor
- 5. Conclusions and perspectives
- References
- Chapter Three: Reactor processes for value added carbon synthesis and turquoise hydrogen
- 1. Introduction
- 1.1. Turquoise hydrogen and solid carbon
- 1.1.1. Solid carbons
- 1.1.1.1. Poorly graphitized, activated carbon, soot
- 1.1.1.2. Value added carbons
- 1.2. Carbon nanotubes formation and properties
- 1.3. Synthesis techniques for bulk carbon nanotube materials
- 1.4. Aims
- 2. CVD reactor comparative metrics
- 3. Substrate grown CVD CNT synthesis
- 3.1. Substrate grown CNT synthesis
- 3.2. Catalyst role and preparation
- 3.3. Hydrocarbon composition
- 3.4. CNT arrays for fibers
- 3.5. Metrics
- 3.5.1. Productivity
- 3.5.2. Catalyst activity and consumption
- 3.5.3. Feed dilution and energy intensity
- 4. Fluidized bed CVD CNT synthesis
- 4.1. Fluidized bed CNT synthesis
- 4.2. Catalyst and catalyst support
- 4.3. Fluidization dynamics and design of vessel
- 4.4. Metrics
- 4.4.1. Productivity
- 4.4.2. Catalyst activity and consumption
- 4.4.3. Feed dilution and energy intensity
- 5. Floating catalyst CVD CNT synthesis
- 5.1. Floating catalyst CNT synthesis
- 5.2. Catalyst and promoter
- 5.3. Carrier gas and gas flow
- 5.4. Hydrocarbon sources and breakdown
- 5.5. Metrics
- 5.5.1. Productivity
- 5.5.2. Catalyst activity and consumption
- 5.5.3. Feed dilution and energy intensity
- 6. Future outlook and discussion section
- 7. Conclusion
- References
- Chapter Four: Properties, applications and industrialization of carbon nanotube materials from hydrocarbons cracking
- 1. Carbon nanotubes as raw materials produced from hydrocarbons cracking: Structure, size and properties.
- 2. Macroscopic materials of CNTs
- 2.1. Fillers in nanocomposites
- 2.1.1. Properties of nanocomposites
- 2.1.1.1. Mechanical properties
- 2.1.1.2. Electrical properties
- 2.2. Nanocomposite electrodes
- 2.3. CNT sheets
- 2.3.1. Properties of CNT sheets
- 2.3.1.1. Models for tensile properties
- 2.3.1.2. Electrical properties
- 2.3.2. Main applications of CNT sheets
- 2.3.2.1. Veils for interlaminar reinforcement in structural composites
- 2.3.2.2. Electrical conductors (EMI, heating elements, current collectors)
- 2.4. Aligned fibers and fabrics
- 2.4.1. Micromechanical model
- 2.4.2. Electrical properties of CNT fibers
- 2.4.3. Examples of applications with CNT fiber electrical cables
- 3. Conclusions and outlook
- References
- Chapter Five: Plasma chemistry and plasma reactors for turquoise hydrogen and carbon nanomaterials production
- 1. Introduction
- 1.1. Non-thermal plasmas
- 1.2. Thermal plasmas
- 2. Thermal plasma technology overview
- 2.1. Hot graphite electrodes DC and AC plasma technologies
- 2.1.1. SINTEF-Kvaerner DC plasma technology
- 2.1.2. Three-phase AC plasma technology
- 2.2. The monolith process
- 3. Gas and plasma kinetics
- 3.1. Gas products
- 3.2. Methane decomposition in the absence of plasma
- 3.3. Methane decomposition in the presence of plasma
- 3.4. Aromatic growth chemistry
- 4. Particle formation
- 4.1. Overview
- 4.2. On the role of aromatics in particle morphology
- 4.3. Inception
- 4.4. Coagulation
- 4.4.1. Large non-organic ions can play a role in particle formation
- 4.5. The ``soot bell��
- 5. Carbon black
- 5.1. What is carbon black?
- 5.2. Production of carbon black by plasma
- 5.3. Mines Paristech-Monolith reactor
- 5.4. Carbon product analysis
- 5.5. Particle morphology
- 6. Other carbon nanostructures
- 6.1. Fullerenes and fullerene soot by thermal plasma.
- 6.2. Single wall nanotubes
- 6.3. Carbon fibers
- 6.4. Carbon necklaces
- 6.5. Cones, disks, and wisps
- 6.6. Growth mechanisms
- 7. Plasma and plasma process modeling
- 7.1. Introduction to plasma pyrolysis CFD modeling
- 7.2. Thermodynamic and transport properties
- 7.3. Arc region
- 7.4. Global gas phase chemistry
- 7.5. Radiation and effect of carbon particles on radiation
- 8. Future challenges and opportunities
- References
- Chapter Six: Advances in molten media technologies for methane pyrolysis
- 1. Introduction
- 2. Advances in methane pyrolysis in molten media
- 3. Hydrodynamic parameters affecting the methane conversion in molten media
- 3.1. Bubble diameter and bubble rising time
- 3.2. Gas flow regimes in molten media
- 3.3. Gas holdup
- 4. Molten media for methane pyrolysis (metals, alloys and salts)
- 4.1. Metals and alloys
- 4.1.1. Metals without catalytic activity
- 4.1.2. Metals with catalytic activity
- 4.1.3. Alloys
- 4.2. Salts
- 5. Influence of molten media type on methane pyrolysis process
- 6. Carbon formation and characterization in molten media
- 7. Conclusions and perspectives
- References
- Further reading
- Index.