Cargando…

Turquoise hydrogen : an effective pathway to decarbonization and value added carbon materials /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Pelucchi, Matteo, Maestri, Matteo
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge, MA : Academic Press, 2023.
Edición:First edition.
Colección:Advances in chemical engineering ; 61.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a22000007i 4500
001 SCIDIR_on1395177777
003 OCoLC
005 20231120010752.0
006 m o d
007 cr cnu---unuuu
008 230828t20232023mau ob 001 0 eng d
040 |a YDX  |b eng  |e rda  |c YDX  |d SFB  |d OPELS  |d OCLCO  |d YDX 
020 |a 9780323957755  |q electronic book 
020 |a 0323957757  |q electronic book 
020 |z 9780323957748 
020 |z 0323957749 
035 |a (OCoLC)1395177777 
050 4 |a TP359.H8  |b T87 2023 
082 0 4 |a 665.81  |2 23/eng/20231103 
245 0 0 |a Turquoise hydrogen :  |b an effective pathway to decarbonization and value added carbon materials /  |c edited by Matteo Pelucchi, Matteo Maestri. 
250 |a First edition. 
264 1 |a Cambridge, MA :  |b Academic Press,  |c 2023. 
264 4 |c �2023 
300 |a 1 online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Advances in chemical engineering ;  |v 61 
504 |a Includes bibliographical references and index. 
505 0 |a Intro -- Turquoise Hydrogen -- Copyright -- Contents -- Contributors -- Chapter One: Catalytic and non-catalytic chemical kinetics of hydrocarbons cracking for hydrogen and carbon materials pro ... -- 1. Introduction -- 2. Mechanism of thermal pyrolysis of hydrocarbons -- 2.1. Core mechanism-CH4 pyrolysis -- 2.2. Reaction classes and reference kinetic parameters for hydrocarbon pyrolysis -- 2.2.1. Chain initiation reactions -- 2.2.2. Propagation -- 2.2.3. Termination -- 2.2.4. Molecular reactions -- 2.2.5. Gas phase evolution and formation of the first aromatic ring -- 2.3. PAHs and SOOT formation mechanism -- 2.3.1. Monocyclic (MAHs) and polycyclic aromatic hydrocarbons (PAHs) -- 2.3.2. Amorphous carbonaceous particles (soot) -- 2.3.2.1. Discrete sectional method for soot modeling -- 3. Catalytic pyrolysis of hydrocarbons -- 3.1. Fouling -- 3.2. CVD/CVI process for the formation of pyrolytic carbon materials -- 3.2.1. Heterogeneous detailed kinetic models -- 3.3. Synthesis of diamond -- 3.3.1. Kinetic mechanism of diamond growth -- 3.4. CNT synthesis and kinetic models -- 3.4.1. Kinetic mechanism for CNTs growth -- 4. Conclusions and outlook -- References -- Chapter Two: Fluid dynamics aspects and reactor scale simulations of chemical reactors for turquoise hydrogen production -- 1. Introduction -- 2. Modeling approaches -- 2.1. Computational fluid dynamic approaches -- 2.1.1. Single-phase flow -- 2.1.2. Euler-Lagrange model: Fluid-particles flow -- 2.1.3. Volume-of-fluid: Two-phase flow -- 2.1.4. Euler-Euler model: Multi-phase flow -- 2.1.5. Additional modeling tools -- 2.1.5.1. Porous media model -- 2.1.5.2. Turbulence models -- 2.2. Macroscopic reactor models -- 3. Models for non-catalytic methane pyrolysis -- 3.1. Solar reactors -- 3.2. Tubular flow reactors -- 3.3. Stirred flow reactors -- 3.4. Plasma reactors -- 3.5. Molten metal reactors. 
505 8 |a 4. Models for catalytic methane pyrolysis -- 4.1. Chemical vapor deposition reactors -- 4.2. Fluidized bed reactors -- 4.3. Catalytic molten metal reactor -- 5. Conclusions and perspectives -- References -- Chapter Three: Reactor processes for value added carbon synthesis and turquoise hydrogen -- 1. Introduction -- 1.1. Turquoise hydrogen and solid carbon -- 1.1.1. Solid carbons -- 1.1.1.1. Poorly graphitized, activated carbon, soot -- 1.1.1.2. Value added carbons -- 1.2. Carbon nanotubes formation and properties -- 1.3. Synthesis techniques for bulk carbon nanotube materials -- 1.4. Aims -- 2. CVD reactor comparative metrics -- 3. Substrate grown CVD CNT synthesis -- 3.1. Substrate grown CNT synthesis -- 3.2. Catalyst role and preparation -- 3.3. Hydrocarbon composition -- 3.4. CNT arrays for fibers -- 3.5. Metrics -- 3.5.1. Productivity -- 3.5.2. Catalyst activity and consumption -- 3.5.3. Feed dilution and energy intensity -- 4. Fluidized bed CVD CNT synthesis -- 4.1. Fluidized bed CNT synthesis -- 4.2. Catalyst and catalyst support -- 4.3. Fluidization dynamics and design of vessel -- 4.4. Metrics -- 4.4.1. Productivity -- 4.4.2. Catalyst activity and consumption -- 4.4.3. Feed dilution and energy intensity -- 5. Floating catalyst CVD CNT synthesis -- 5.1. Floating catalyst CNT synthesis -- 5.2. Catalyst and promoter -- 5.3. Carrier gas and gas flow -- 5.4. Hydrocarbon sources and breakdown -- 5.5. Metrics -- 5.5.1. Productivity -- 5.5.2. Catalyst activity and consumption -- 5.5.3. Feed dilution and energy intensity -- 6. Future outlook and discussion section -- 7. Conclusion -- References -- Chapter Four: Properties, applications and industrialization of carbon nanotube materials from hydrocarbons cracking -- 1. Carbon nanotubes as raw materials produced from hydrocarbons cracking: Structure, size and properties. 
505 8 |a 2. Macroscopic materials of CNTs -- 2.1. Fillers in nanocomposites -- 2.1.1. Properties of nanocomposites -- 2.1.1.1. Mechanical properties -- 2.1.1.2. Electrical properties -- 2.2. Nanocomposite electrodes -- 2.3. CNT sheets -- 2.3.1. Properties of CNT sheets -- 2.3.1.1. Models for tensile properties -- 2.3.1.2. Electrical properties -- 2.3.2. Main applications of CNT sheets -- 2.3.2.1. Veils for interlaminar reinforcement in structural composites -- 2.3.2.2. Electrical conductors (EMI, heating elements, current collectors) -- 2.4. Aligned fibers and fabrics -- 2.4.1. Micromechanical model -- 2.4.2. Electrical properties of CNT fibers -- 2.4.3. Examples of applications with CNT fiber electrical cables -- 3. Conclusions and outlook -- References -- Chapter Five: Plasma chemistry and plasma reactors for turquoise hydrogen and carbon nanomaterials production -- 1. Introduction -- 1.1. Non-thermal plasmas -- 1.2. Thermal plasmas -- 2. Thermal plasma technology overview -- 2.1. Hot graphite electrodes DC and AC plasma technologies -- 2.1.1. SINTEF-Kvaerner DC plasma technology -- 2.1.2. Three-phase AC plasma technology -- 2.2. The monolith process -- 3. Gas and plasma kinetics -- 3.1. Gas products -- 3.2. Methane decomposition in the absence of plasma -- 3.3. Methane decomposition in the presence of plasma -- 3.4. Aromatic growth chemistry -- 4. Particle formation -- 4.1. Overview -- 4.2. On the role of aromatics in particle morphology -- 4.3. Inception -- 4.4. Coagulation -- 4.4.1. Large non-organic ions can play a role in particle formation -- 4.5. The ``soot bell�� -- 5. Carbon black -- 5.1. What is carbon black? -- 5.2. Production of carbon black by plasma -- 5.3. Mines Paristech-Monolith reactor -- 5.4. Carbon product analysis -- 5.5. Particle morphology -- 6. Other carbon nanostructures -- 6.1. Fullerenes and fullerene soot by thermal plasma. 
505 8 |a 6.2. Single wall nanotubes -- 6.3. Carbon fibers -- 6.4. Carbon necklaces -- 6.5. Cones, disks, and wisps -- 6.6. Growth mechanisms -- 7. Plasma and plasma process modeling -- 7.1. Introduction to plasma pyrolysis CFD modeling -- 7.2. Thermodynamic and transport properties -- 7.3. Arc region -- 7.4. Global gas phase chemistry -- 7.5. Radiation and effect of carbon particles on radiation -- 8. Future challenges and opportunities -- References -- Chapter Six: Advances in molten media technologies for methane pyrolysis -- 1. Introduction -- 2. Advances in methane pyrolysis in molten media -- 3. Hydrodynamic parameters affecting the methane conversion in molten media -- 3.1. Bubble diameter and bubble rising time -- 3.2. Gas flow regimes in molten media -- 3.3. Gas holdup -- 4. Molten media for methane pyrolysis (metals, alloys and salts) -- 4.1. Metals and alloys -- 4.1.1. Metals without catalytic activity -- 4.1.2. Metals with catalytic activity -- 4.1.3. Alloys -- 4.2. Salts -- 5. Influence of molten media type on methane pyrolysis process -- 6. Carbon formation and characterization in molten media -- 7. Conclusions and perspectives -- References -- Further reading -- Index. 
588 |a Description based on online resource; title from digital title page (viewed on November 03, 2023). 
650 0 |a Hydrogen as fuel  |x Environmental aspects. 
650 6 |a Hydrog�ene (Combustible)  |0 (CaQQLa)201-0077361  |x Aspect de l'environnement.  |0 (CaQQLa)201-0374355 
700 1 |a Pelucchi, Matteo. 
700 1 |a Maestri, Matteo. 
776 0 8 |i ebook version :  |z 9780323957755 
776 0 8 |c Original  |z 0323957749  |z 9780323957748  |w (OCoLC)1361680162 
830 0 |a Advances in chemical engineering ;  |v 61. 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/bookseries/00652377/61  |z Texto completo