|
|
|
|
LEADER |
00000cam a22000007i 4500 |
001 |
SCIDIR_on1395177777 |
003 |
OCoLC |
005 |
20231120010752.0 |
006 |
m o d |
007 |
cr cnu---unuuu |
008 |
230828t20232023mau ob 001 0 eng d |
040 |
|
|
|a YDX
|b eng
|e rda
|c YDX
|d SFB
|d OPELS
|d OCLCO
|d YDX
|
020 |
|
|
|a 9780323957755
|q electronic book
|
020 |
|
|
|a 0323957757
|q electronic book
|
020 |
|
|
|z 9780323957748
|
020 |
|
|
|z 0323957749
|
035 |
|
|
|a (OCoLC)1395177777
|
050 |
|
4 |
|a TP359.H8
|b T87 2023
|
082 |
0 |
4 |
|a 665.81
|2 23/eng/20231103
|
245 |
0 |
0 |
|a Turquoise hydrogen :
|b an effective pathway to decarbonization and value added carbon materials /
|c edited by Matteo Pelucchi, Matteo Maestri.
|
250 |
|
|
|a First edition.
|
264 |
|
1 |
|a Cambridge, MA :
|b Academic Press,
|c 2023.
|
264 |
|
4 |
|c �2023
|
300 |
|
|
|a 1 online resource.
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Advances in chemical engineering ;
|v 61
|
504 |
|
|
|a Includes bibliographical references and index.
|
505 |
0 |
|
|a Intro -- Turquoise Hydrogen -- Copyright -- Contents -- Contributors -- Chapter One: Catalytic and non-catalytic chemical kinetics of hydrocarbons cracking for hydrogen and carbon materials pro ... -- 1. Introduction -- 2. Mechanism of thermal pyrolysis of hydrocarbons -- 2.1. Core mechanism-CH4 pyrolysis -- 2.2. Reaction classes and reference kinetic parameters for hydrocarbon pyrolysis -- 2.2.1. Chain initiation reactions -- 2.2.2. Propagation -- 2.2.3. Termination -- 2.2.4. Molecular reactions -- 2.2.5. Gas phase evolution and formation of the first aromatic ring -- 2.3. PAHs and SOOT formation mechanism -- 2.3.1. Monocyclic (MAHs) and polycyclic aromatic hydrocarbons (PAHs) -- 2.3.2. Amorphous carbonaceous particles (soot) -- 2.3.2.1. Discrete sectional method for soot modeling -- 3. Catalytic pyrolysis of hydrocarbons -- 3.1. Fouling -- 3.2. CVD/CVI process for the formation of pyrolytic carbon materials -- 3.2.1. Heterogeneous detailed kinetic models -- 3.3. Synthesis of diamond -- 3.3.1. Kinetic mechanism of diamond growth -- 3.4. CNT synthesis and kinetic models -- 3.4.1. Kinetic mechanism for CNTs growth -- 4. Conclusions and outlook -- References -- Chapter Two: Fluid dynamics aspects and reactor scale simulations of chemical reactors for turquoise hydrogen production -- 1. Introduction -- 2. Modeling approaches -- 2.1. Computational fluid dynamic approaches -- 2.1.1. Single-phase flow -- 2.1.2. Euler-Lagrange model: Fluid-particles flow -- 2.1.3. Volume-of-fluid: Two-phase flow -- 2.1.4. Euler-Euler model: Multi-phase flow -- 2.1.5. Additional modeling tools -- 2.1.5.1. Porous media model -- 2.1.5.2. Turbulence models -- 2.2. Macroscopic reactor models -- 3. Models for non-catalytic methane pyrolysis -- 3.1. Solar reactors -- 3.2. Tubular flow reactors -- 3.3. Stirred flow reactors -- 3.4. Plasma reactors -- 3.5. Molten metal reactors.
|
505 |
8 |
|
|a 4. Models for catalytic methane pyrolysis -- 4.1. Chemical vapor deposition reactors -- 4.2. Fluidized bed reactors -- 4.3. Catalytic molten metal reactor -- 5. Conclusions and perspectives -- References -- Chapter Three: Reactor processes for value added carbon synthesis and turquoise hydrogen -- 1. Introduction -- 1.1. Turquoise hydrogen and solid carbon -- 1.1.1. Solid carbons -- 1.1.1.1. Poorly graphitized, activated carbon, soot -- 1.1.1.2. Value added carbons -- 1.2. Carbon nanotubes formation and properties -- 1.3. Synthesis techniques for bulk carbon nanotube materials -- 1.4. Aims -- 2. CVD reactor comparative metrics -- 3. Substrate grown CVD CNT synthesis -- 3.1. Substrate grown CNT synthesis -- 3.2. Catalyst role and preparation -- 3.3. Hydrocarbon composition -- 3.4. CNT arrays for fibers -- 3.5. Metrics -- 3.5.1. Productivity -- 3.5.2. Catalyst activity and consumption -- 3.5.3. Feed dilution and energy intensity -- 4. Fluidized bed CVD CNT synthesis -- 4.1. Fluidized bed CNT synthesis -- 4.2. Catalyst and catalyst support -- 4.3. Fluidization dynamics and design of vessel -- 4.4. Metrics -- 4.4.1. Productivity -- 4.4.2. Catalyst activity and consumption -- 4.4.3. Feed dilution and energy intensity -- 5. Floating catalyst CVD CNT synthesis -- 5.1. Floating catalyst CNT synthesis -- 5.2. Catalyst and promoter -- 5.3. Carrier gas and gas flow -- 5.4. Hydrocarbon sources and breakdown -- 5.5. Metrics -- 5.5.1. Productivity -- 5.5.2. Catalyst activity and consumption -- 5.5.3. Feed dilution and energy intensity -- 6. Future outlook and discussion section -- 7. Conclusion -- References -- Chapter Four: Properties, applications and industrialization of carbon nanotube materials from hydrocarbons cracking -- 1. Carbon nanotubes as raw materials produced from hydrocarbons cracking: Structure, size and properties.
|
505 |
8 |
|
|a 2. Macroscopic materials of CNTs -- 2.1. Fillers in nanocomposites -- 2.1.1. Properties of nanocomposites -- 2.1.1.1. Mechanical properties -- 2.1.1.2. Electrical properties -- 2.2. Nanocomposite electrodes -- 2.3. CNT sheets -- 2.3.1. Properties of CNT sheets -- 2.3.1.1. Models for tensile properties -- 2.3.1.2. Electrical properties -- 2.3.2. Main applications of CNT sheets -- 2.3.2.1. Veils for interlaminar reinforcement in structural composites -- 2.3.2.2. Electrical conductors (EMI, heating elements, current collectors) -- 2.4. Aligned fibers and fabrics -- 2.4.1. Micromechanical model -- 2.4.2. Electrical properties of CNT fibers -- 2.4.3. Examples of applications with CNT fiber electrical cables -- 3. Conclusions and outlook -- References -- Chapter Five: Plasma chemistry and plasma reactors for turquoise hydrogen and carbon nanomaterials production -- 1. Introduction -- 1.1. Non-thermal plasmas -- 1.2. Thermal plasmas -- 2. Thermal plasma technology overview -- 2.1. Hot graphite electrodes DC and AC plasma technologies -- 2.1.1. SINTEF-Kvaerner DC plasma technology -- 2.1.2. Three-phase AC plasma technology -- 2.2. The monolith process -- 3. Gas and plasma kinetics -- 3.1. Gas products -- 3.2. Methane decomposition in the absence of plasma -- 3.3. Methane decomposition in the presence of plasma -- 3.4. Aromatic growth chemistry -- 4. Particle formation -- 4.1. Overview -- 4.2. On the role of aromatics in particle morphology -- 4.3. Inception -- 4.4. Coagulation -- 4.4.1. Large non-organic ions can play a role in particle formation -- 4.5. The ``soot bell�� -- 5. Carbon black -- 5.1. What is carbon black? -- 5.2. Production of carbon black by plasma -- 5.3. Mines Paristech-Monolith reactor -- 5.4. Carbon product analysis -- 5.5. Particle morphology -- 6. Other carbon nanostructures -- 6.1. Fullerenes and fullerene soot by thermal plasma.
|
505 |
8 |
|
|a 6.2. Single wall nanotubes -- 6.3. Carbon fibers -- 6.4. Carbon necklaces -- 6.5. Cones, disks, and wisps -- 6.6. Growth mechanisms -- 7. Plasma and plasma process modeling -- 7.1. Introduction to plasma pyrolysis CFD modeling -- 7.2. Thermodynamic and transport properties -- 7.3. Arc region -- 7.4. Global gas phase chemistry -- 7.5. Radiation and effect of carbon particles on radiation -- 8. Future challenges and opportunities -- References -- Chapter Six: Advances in molten media technologies for methane pyrolysis -- 1. Introduction -- 2. Advances in methane pyrolysis in molten media -- 3. Hydrodynamic parameters affecting the methane conversion in molten media -- 3.1. Bubble diameter and bubble rising time -- 3.2. Gas flow regimes in molten media -- 3.3. Gas holdup -- 4. Molten media for methane pyrolysis (metals, alloys and salts) -- 4.1. Metals and alloys -- 4.1.1. Metals without catalytic activity -- 4.1.2. Metals with catalytic activity -- 4.1.3. Alloys -- 4.2. Salts -- 5. Influence of molten media type on methane pyrolysis process -- 6. Carbon formation and characterization in molten media -- 7. Conclusions and perspectives -- References -- Further reading -- Index.
|
588 |
|
|
|a Description based on online resource; title from digital title page (viewed on November 03, 2023).
|
650 |
|
0 |
|a Hydrogen as fuel
|x Environmental aspects.
|
650 |
|
6 |
|a Hydrog�ene (Combustible)
|0 (CaQQLa)201-0077361
|x Aspect de l'environnement.
|0 (CaQQLa)201-0374355
|
700 |
1 |
|
|a Pelucchi, Matteo.
|
700 |
1 |
|
|a Maestri, Matteo.
|
776 |
0 |
8 |
|i ebook version :
|z 9780323957755
|
776 |
0 |
8 |
|c Original
|z 0323957749
|z 9780323957748
|w (OCoLC)1361680162
|
830 |
|
0 |
|a Advances in chemical engineering ;
|v 61.
|
856 |
4 |
0 |
|u https://sciencedirect.uam.elogim.com/science/bookseries/00652377/61
|z Texto completo
|