Alternative methods in neurotoxicology /
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
[S.l.] :
Academic Press,
2023.
|
Colección: | Advances in neurotoxicology ;
9 |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Intro
- Alternative Methods in Neurotoxicology
- Copyright
- Contents
- Contributors
- Preface
- Chapter One: Assessment of mitochondrial function in neurotoxicology using alternative model organisms
- 1. Introduction
- 2. Mitochondria as a target for toxicants
- 3. Mitochondrial dysfunction and neurotoxicity
- 4. Mitochondrial function assessment
- 5. Respirometry protocols using alternative model organisms
- 6. Concluding remarks
- Acknowledgments
- References
- Chapter Two: Planarians as a model to study neurotoxic agents
- 1. Introduction
- 2. The planarian system: The basics
- 3. The planarian brain: Structure, function, and regeneration
- 4. Endpoints to assess neurotoxicity in planarians
- 5. Planarian species used in neurotoxicology
- 6. Fitting in: Planarians complement other invertebrate models (nematodes, developing zebrafish)
- 7. Case study: Organophosphorus agents in planarians
- 7.1. Current gaps in understanding the toxicity of organophosphorus agents
- 7.2. Relevancy of the planarian system: Cholinesterases and metabolism
- 7.3. Linking molecular and behavioral outcomes of OP toxicity in planarians
- 8. Concluding remarks
- Acknowledgments
- Conflict of interest
- References
- Chapter Three: The role of Drosophila melanogaster in neurotoxicology studies: Responses to different harmful substances
- 1. Introduction
- 1.1. The neuronal system of Drosophila melanogaster: Development from the embryo to the adult fly
- 2. Drosophila melanogaster as a research model in neurotoxicity
- 2.1. The radiation-induced neurotoxicity in Drosophila melanogaster at different life stages: A model of genomics toxicity
- 2.2. The lead (Pb)-induced neurotoxicity in Drosophila melanogaster at different life stages: A model of heavy metals tox.
- 2.3. The rotenone-induced neurotoxicity in Drosophila melanogaster at different life stages: A model of pesticide toxicity
- 2.4. The bisphenol A- and microplastics-induced neurotoxicity in Drosophila melanogaster at different life stages: A mode ...
- 3. Concluding remarks
- Acknowledgments
- References
- Chapter Four: Neurotoxicology of metals and metallic nanoparticles in Caenorhabditis elegans
- 1. Introduction
- 2. C. elegans neuronal system
- 3. Metals neurotoxicology in C. elegans
- 3.1. Manganese
- 3.2. Iron
- 3.3. Copper neurotoxicity
- 3.4. Lead neurotoxicity
- 3.5. Mercury neurotoxicity
- 3.6. Cadmium
- 3.7. Aluminum
- 3.8. Metal mixtures
- 3.9. Other metals
- 4. Metallic nanoparticles neurotoxicology in C. elegans
- 4.1. Ag-NPs
- 4.2. Fe-NPs
- 4.3. Al-NPs
- 4.4. Cu-NPs
- 4.5. Au-NPs
- 4.6. Ti-NPs
- 4.7. Cd-NPs
- 4.8. Si-NPs
- 4.9. Other metallic nanoparticles
- 5. Perspectives and concluding remarks
- References
- Chapter Five: Neurotoxicology of organic environmental toxicants using Caenorhabditis elegans as a model
- 1. Introduction
- 2. Caenorhabditis elegans in environmental neurotoxicology
- 3. Environmental neurotoxicants and C. elegans
- 3.1. Pesticides
- 3.1.1. Dithiocarbamates
- 3.1.2. Paraquat
- 3.2. Methylated metals
- 3.3. Micro and nanoplastics
- 3.4. Volatile organic chemicals
- 3.5. Other contaminants
- 3.5.1. Drugs
- 3.5.2. Bisphenol A
- 3.6. Phthalates
- 4. Conclusions and perspectives
- References
- Chapter Six: Nauphoeta cinerea as an emerging model in neurotoxicology
- 1. Introduction
- 2. Lobster cockroach N. cinerea
- 3. Behavioral phenotyping in N. cinerea
- 4. Mechanism based neurotoxicity studies using N. cinerea
- 5. Conclusion
- Acknowledgments
- References.
- Chapter Seven: Human neural stem cells in developmental neurotoxicology: Current scenario and future prospects
- 1. Introduction
- 2. Development of the nervous system
- 3. Types of stem cells and their properties/characteristics
- 3.1. Concept of ``stem cell��
- 3.2. Types of stem cells
- 3.2.1. Totipotent stem cells
- 3.2.2. Pluripotent stem cells
- 3.2.3. Multipotent stem cells
- 3.2.4. Unipotent stem cells
- 4. Bi-dimensional (2D) and tri-dimensional (3D) cell cultures
- 5. Human neural stem cells and neurodevelopmental endpoints
- 5.1. Proposed assays in the DNT IVB using NSC
- 5.2. Other DNT assay based on NSC
- 5.2.1. Neural rosette formation
- 5.2.2. Neuronal subtype differentiation
- 5.2.3. Human synaptogenesis/neural network formation
- 5.2.4. Myelination
- 5.2.5. Other assays with models similar to those included in the DNT IVB
- 6. Present and future expectations
- 6.1. Brain organoids
- 6.2. ``Omics�� and ``in silico�� approaches
- 6.3. Knowledge integration of research data
- References
- Chapter Eight: Perspectives for advancing neurotoxicity studies with Drosophila
- 1. Introduction
- 2. Fly models in current and future advances in neurotoxicology: Overview
- 2.1. Meeting the goals for neurotoxicology studies with flies
- 2.2. Importance of assay choice for neurotoxic endpoints
- 2.3. Developmental assays: Consideration of stage specific neurotoxic endpoints
- 2.3.1. The embryo
- 2.3.2. The larval stage
- 2.3.3. The pupae
- 2.4. Adult assays
- 2.4.1. Conventional toxicity assays
- 2.4.2. Behavior assays
- 2.5. Toxicokinetic endpoints
- 2.5.1. Tissue distribution
- 2.6. Molecular endpoints: In search of pathways and candidate genes in toxicity mechanisms
- 2.6.1. Genomics
- 2.6.2. QTL studies
- 2.6.3. Transcriptomics
- 2.6.4. Single-cell RNA sequencing.
- 4. Studies performed on Drosophila PD model for the effect of natural plant products/extract
- 4.1. Flavonoids
- 4.2. Alkaloids
- 4.3. Effect of terpenoids
- 4.4. Effect of plant extracts and infusions
- 5. Conclusions
- References
- Chapter Eleven: Neurotoxicity of iron (Fe) in Drosophila and the protective roles of natural products
- 1. Introduction
- 2. Iron homeostasis in Drosophila
- 2.1. Drosophila orthologues of mammalian iron regulatory proteins
- 2.2. Dietary iron uptake, storage, and efflux in Drosophila
- 3. Iron-induced neurotoxicity in Drosophila
- 4. Protective activity of natural products against iron neurotoxicity in Drosophila
- 4.1. Quercetin
- 4.2. Curcumin
- 4.3. Hesperidin
- 4.4. Epigallocatechin-3-gallate (EGCG)
- 5. Concluding remarks
- References.