Cargando…

Alternative methods in neurotoxicology /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Rocha, Joao Batista
Formato: Electrónico eBook
Idioma:Inglés
Publicado: [S.l.] : Academic Press, 2023.
Colección:Advances in neurotoxicology ; 9
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Intro
  • Alternative Methods in Neurotoxicology
  • Copyright
  • Contents
  • Contributors
  • Preface
  • Chapter One: Assessment of mitochondrial function in neurotoxicology using alternative model organisms
  • 1. Introduction
  • 2. Mitochondria as a target for toxicants
  • 3. Mitochondrial dysfunction and neurotoxicity
  • 4. Mitochondrial function assessment
  • 5. Respirometry protocols using alternative model organisms
  • 6. Concluding remarks
  • Acknowledgments
  • References
  • Chapter Two: Planarians as a model to study neurotoxic agents
  • 1. Introduction
  • 2. The planarian system: The basics
  • 3. The planarian brain: Structure, function, and regeneration
  • 4. Endpoints to assess neurotoxicity in planarians
  • 5. Planarian species used in neurotoxicology
  • 6. Fitting in: Planarians complement other invertebrate models (nematodes, developing zebrafish)
  • 7. Case study: Organophosphorus agents in planarians
  • 7.1. Current gaps in understanding the toxicity of organophosphorus agents
  • 7.2. Relevancy of the planarian system: Cholinesterases and metabolism
  • 7.3. Linking molecular and behavioral outcomes of OP toxicity in planarians
  • 8. Concluding remarks
  • Acknowledgments
  • Conflict of interest
  • References
  • Chapter Three: The role of Drosophila melanogaster in neurotoxicology studies: Responses to different harmful substances
  • 1. Introduction
  • 1.1. The neuronal system of Drosophila melanogaster: Development from the embryo to the adult fly
  • 2. Drosophila melanogaster as a research model in neurotoxicity
  • 2.1. The radiation-induced neurotoxicity in Drosophila melanogaster at different life stages: A model of genomics toxicity
  • 2.2. The lead (Pb)-induced neurotoxicity in Drosophila melanogaster at different life stages: A model of heavy metals tox.
  • 2.3. The rotenone-induced neurotoxicity in Drosophila melanogaster at different life stages: A model of pesticide toxicity
  • 2.4. The bisphenol A- and microplastics-induced neurotoxicity in Drosophila melanogaster at different life stages: A mode ...
  • 3. Concluding remarks
  • Acknowledgments
  • References
  • Chapter Four: Neurotoxicology of metals and metallic nanoparticles in Caenorhabditis elegans
  • 1. Introduction
  • 2. C. elegans neuronal system
  • 3. Metals neurotoxicology in C. elegans
  • 3.1. Manganese
  • 3.2. Iron
  • 3.3. Copper neurotoxicity
  • 3.4. Lead neurotoxicity
  • 3.5. Mercury neurotoxicity
  • 3.6. Cadmium
  • 3.7. Aluminum
  • 3.8. Metal mixtures
  • 3.9. Other metals
  • 4. Metallic nanoparticles neurotoxicology in C. elegans
  • 4.1. Ag-NPs
  • 4.2. Fe-NPs
  • 4.3. Al-NPs
  • 4.4. Cu-NPs
  • 4.5. Au-NPs
  • 4.6. Ti-NPs
  • 4.7. Cd-NPs
  • 4.8. Si-NPs
  • 4.9. Other metallic nanoparticles
  • 5. Perspectives and concluding remarks
  • References
  • Chapter Five: Neurotoxicology of organic environmental toxicants using Caenorhabditis elegans as a model
  • 1. Introduction
  • 2. Caenorhabditis elegans in environmental neurotoxicology
  • 3. Environmental neurotoxicants and C. elegans
  • 3.1. Pesticides
  • 3.1.1. Dithiocarbamates
  • 3.1.2. Paraquat
  • 3.2. Methylated metals
  • 3.3. Micro and nanoplastics
  • 3.4. Volatile organic chemicals
  • 3.5. Other contaminants
  • 3.5.1. Drugs
  • 3.5.2. Bisphenol A
  • 3.6. Phthalates
  • 4. Conclusions and perspectives
  • References
  • Chapter Six: Nauphoeta cinerea as an emerging model in neurotoxicology
  • 1. Introduction
  • 2. Lobster cockroach N. cinerea
  • 3. Behavioral phenotyping in N. cinerea
  • 4. Mechanism based neurotoxicity studies using N. cinerea
  • 5. Conclusion
  • Acknowledgments
  • References.
  • Chapter Seven: Human neural stem cells in developmental neurotoxicology: Current scenario and future prospects
  • 1. Introduction
  • 2. Development of the nervous system
  • 3. Types of stem cells and their properties/characteristics
  • 3.1. Concept of ``stem cell��
  • 3.2. Types of stem cells
  • 3.2.1. Totipotent stem cells
  • 3.2.2. Pluripotent stem cells
  • 3.2.3. Multipotent stem cells
  • 3.2.4. Unipotent stem cells
  • 4. Bi-dimensional (2D) and tri-dimensional (3D) cell cultures
  • 5. Human neural stem cells and neurodevelopmental endpoints
  • 5.1. Proposed assays in the DNT IVB using NSC
  • 5.2. Other DNT assay based on NSC
  • 5.2.1. Neural rosette formation
  • 5.2.2. Neuronal subtype differentiation
  • 5.2.3. Human synaptogenesis/neural network formation
  • 5.2.4. Myelination
  • 5.2.5. Other assays with models similar to those included in the DNT IVB
  • 6. Present and future expectations
  • 6.1. Brain organoids
  • 6.2. ``Omics�� and ``in silico�� approaches
  • 6.3. Knowledge integration of research data
  • References
  • Chapter Eight: Perspectives for advancing neurotoxicity studies with Drosophila
  • 1. Introduction
  • 2. Fly models in current and future advances in neurotoxicology: Overview
  • 2.1. Meeting the goals for neurotoxicology studies with flies
  • 2.2. Importance of assay choice for neurotoxic endpoints
  • 2.3. Developmental assays: Consideration of stage specific neurotoxic endpoints
  • 2.3.1. The embryo
  • 2.3.2. The larval stage
  • 2.3.3. The pupae
  • 2.4. Adult assays
  • 2.4.1. Conventional toxicity assays
  • 2.4.2. Behavior assays
  • 2.5. Toxicokinetic endpoints
  • 2.5.1. Tissue distribution
  • 2.6. Molecular endpoints: In search of pathways and candidate genes in toxicity mechanisms
  • 2.6.1. Genomics
  • 2.6.2. QTL studies
  • 2.6.3. Transcriptomics
  • 2.6.4. Single-cell RNA sequencing.
  • 4. Studies performed on Drosophila PD model for the effect of natural plant products/extract
  • 4.1. Flavonoids
  • 4.2. Alkaloids
  • 4.3. Effect of terpenoids
  • 4.4. Effect of plant extracts and infusions
  • 5. Conclusions
  • References
  • Chapter Eleven: Neurotoxicity of iron (Fe) in Drosophila and the protective roles of natural products
  • 1. Introduction
  • 2. Iron homeostasis in Drosophila
  • 2.1. Drosophila orthologues of mammalian iron regulatory proteins
  • 2.2. Dietary iron uptake, storage, and efflux in Drosophila
  • 3. Iron-induced neurotoxicity in Drosophila
  • 4. Protective activity of natural products against iron neurotoxicity in Drosophila
  • 4.1. Quercetin
  • 4.2. Curcumin
  • 4.3. Hesperidin
  • 4.4. Epigallocatechin-3-gallate (EGCG)
  • 5. Concluding remarks
  • References.