Cargando…

Unmanned aerial systems for monitoring soil, vegetation, and river environments /

Unmanned Aerial Systems for Monitoring Soil, Vegetation, and Riverine Environments provides an overview of how unmanned aerial systems have revolutionized our capability to monitor river systems, soil characteristics, and related processes at unparalleled spatio-temporal resolutions. This capability...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Manfreda, Salvatore (Editor ), Eyal, Ben Dor (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam : Elsevier, [2023]
Colección:Earth observation.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Front Cover
  • Unmanned Aerial Systems for Monitoring Soil, Vegetation, and Riverine Environments
  • Copyright Page
  • Dedication
  • Contents
  • List of contributors
  • List of abbreviations
  • Introduction
  • 1 Preface
  • 2 Section 1 on general introduction on the use of unmanned aerial system for environmental monitoring
  • 3 Section 2 on vegetation monitoring
  • 4 Section 3 on soil mapping
  • 5 Section 4 on river monitoring
  • 6 Section 5 on tools and datasets
  • References
  • 1 General introduction on the use of UAS for environmental monitoring
  • 1 Remote sensing of the environment using unmanned aerial systems
  • 1.1 A brief history of unmanned aerial systems
  • 1.2 Evolution of unmanned aerial systems for monitoring of natural and agricultural ecosystems
  • 1.2.1 Precision agriculture
  • 1.2.2 Monitoring of natural ecosystems
  • 1.2.3 Water bodies
  • 1.3 The social impact
  • 1.4 Unmanned aerial system platforms
  • 1.5 Unmanned aerial system sensors
  • 1.6 Economic impact and regulations
  • 1.7 Final remarks and challenges
  • 1.8 Notes on the existing challenges and the purpose of this book
  • 1.9 Epilogue
  • References
  • 2 Protocols for UAS-based observation
  • 2.1 Introduction
  • 2.2 Study design-guidance of survey preparation
  • 2.2.1 Legislative and social impact of UAS
  • 2.2.2 Platform and sensor option
  • 2.2.2.1 Platforms
  • 2.2.2.2 Sensors
  • 2.2.3 Sensor settings and UAS control software
  • 2.2.4 Georeferencing
  • 2.3 Preflight fieldwork
  • 2.3.1 Reconnaissance of the surveyed area
  • 2.3.2 Ground control point distribution and radiometric calibration
  • 2.3.3 Field data collection
  • 2.4 Flight mission
  • 2.5 Processing of aerial data
  • 2.5.1 Geometric processing
  • 2.5.2 Radiometric processing
  • 2.6 Quality assurance
  • 2.6.1 Quality assurance metrics for radiometric data
  • 2.6.2 Quality assurance metrics application to thermal images
  • 2.7 Summary and final remarks
  • References
  • 3 Using structure-from-motion workflows for 3D mapping and remote sensing
  • 3.1 Introduction
  • 3.2 Structure-from-motion workflow: from 2D images to 3D dense point cloud
  • 3.2.1 Theoretical principles
  • 3.2.1.1 Feature detection
  • 3.2.1.2 Feature matching and validation
  • 3.2.1.3 Structure from motion
  • 3.2.1.4 Georeferencing
  • 3.2.1.5 Refinement of bundle adjustment
  • 3.2.1.6 Dense reconstruction
  • 3.3 Generating geospatial products from structure-from-motion-based point clouds
  • 3.3.1 Generating digital surface model and digital terrain models
  • 3.3.2 Generating textured 3D models
  • 3.3.3 Generating RGB orthomosaics
  • 3.3.4 Generating multispectral orthomosaics
  • 3.4 Using the Metashape processing workflow in 3D mapping and remote sensing
  • 3.4.1 Generating dense point clouds
  • 3.4.2 Generating digital surface models, textured models, and orthomosaics
  • 3.5 Conclusions
  • References
  • 2 Vegetation monitoring