Cargando…

DEEP NETWORK DESIGN FOR MEDICAL IMAGE COMPUTING principles and applications.

Deep Network Design for Medical Image Computing: Principles and Applications covers a range of MIC tasks and discusses design principles of these tasks for deep learning approaches in medicine. These include skin disease classification, vertebrae identification and localization, cardiac ultrasound i...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: LIAO, HAOFU. ZHOU, S. KEVIN. LUO, JIEBO
Formato: Electrónico eBook
Idioma:Inglés
Publicado: [S.l.] : ELSEVIER ACADEMIC PRESS, 2022.
Colección:The MICCAI Society book series
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000M 4500
001 SCIDIR_on1342492034
003 OCoLC
005 20231120010701.0
006 m o d
007 cr |n|||||||||
008 220828s2022 xx o 0|| 0 eng d
040 |a YDX  |b eng  |c YDX  |d UKMGB  |d OCLCF  |d UKAHL  |d OPELS  |d OCLCO  |d N$T 
015 |a GBC2C3695  |2 bnb 
016 7 |a 020678135  |2 Uk 
019 |a 1352051522 
020 |a 9780128244036  |q (electronic bk.) 
020 |a 0128244038  |q (electronic bk.) 
020 |a 9780128243831  |q (electronic bk.) 
020 |a 012824383X  |q (electronic bk.) 
035 |a (OCoLC)1342492034  |z (OCoLC)1352051522 
050 4 |a RC78.7.D53 
082 0 4 |a 616.0754  |2 23 
100 1 |a LIAO, HAOFU. ZHOU, S. KEVIN. LUO, JIEBO. 
245 1 0 |a DEEP NETWORK DESIGN FOR MEDICAL IMAGE COMPUTING  |h [electronic resource] :  |b principles and applications. 
260 |a [S.l.] :  |b ELSEVIER ACADEMIC PRESS,  |c 2022. 
300 |a 1 online resource. 
336 |a text  |2 rdacontent 
337 |a computer  |2 rdamedia 
338 |a online resource  |2 rdacarrier 
490 0 |a The MICCAI Society book series 
520 |a Deep Network Design for Medical Image Computing: Principles and Applications covers a range of MIC tasks and discusses design principles of these tasks for deep learning approaches in medicine. These include skin disease classification, vertebrae identification and localization, cardiac ultrasound image segmentation, 2D/3D medical image registration for intervention, metal artifact reduction, sparse-view artifact reduction, etc. For each topic, the book provides a deep learning-based solution that takes into account the medical or biological aspect of the problem and how the solution addresses a variety of important questions surrounding architecture, the design of deep learning techniques, when to introduce adversarial learning, and more. This book will help graduate students and researchers develop a better understanding of the deep learning design principles for MIC and to apply them to their medical problems. 
650 0 |a Diagnostic imaging. 
650 0 |a Medical informatics. 
650 0 |a Computer networks  |x Design. 
650 2 |a Diagnostic Imaging  |0 (DNLM)D003952 
650 6 |a Imagerie pour le diagnostic.  |0 (CaQQLa)201-0146124 
650 6 |a M�edecine  |x Informatique.  |0 (CaQQLa)201-0103112 
650 7 |a Computer networks  |x Design  |2 fast  |0 (OCoLC)fst00872308 
650 7 |a Diagnostic imaging  |2 fast  |0 (OCoLC)fst00892354 
650 7 |a Medical informatics  |2 fast  |0 (OCoLC)fst01014175 
776 0 8 |i Print version:  |z 9780128244036 
776 0 8 |i Print version:  |z 012824383X  |z 9780128243831  |w (OCoLC)1296534033 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780128243831  |z Texto completo