Cargando…

Additive friction stir deposition /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Yu, Hang Z. (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam, Netherlands ; Cambridge, MA : Elsevier, [2022]
Colección:Additive manufacturing materials and technologies
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Front Cover
  • Additive Friction Stir Deposition
  • Copyright Page
  • Contents
  • Preface
  • Book endorsement: Additive Friction Stir Deposition
  • 1 Introduction
  • 1.1 Additive manufacturing for metals
  • 1.2 Solid-state metal additive manufacturing
  • 1.3 Additive friction stir deposition
  • 1.4 Organization of this book
  • References
  • 2 Process fundamentals
  • 2.1 Elements of friction theory
  • 2.2 Fundamentals of heat and mass transfer
  • 2.2.1 Heat transfer
  • 2.2.2 Mass transfer
  • 2.3 Basic principle of additive friction stir deposition
  • 2.4 Establishment of an integrated in situ monitoring system: real-time measurement of temperature, force, torque, and mate ...
  • 2.5 Temperature evolution in the deposited material and substrate
  • 2.5.1 Thermal history of the deposited materials
  • 2.5.2 Dependence of thermal features on the processing conditions in additive friction stir deposition
  • 2.5.3 Power law relationships of peak temperature and processing parameters
  • 2.5.4 Temperature evolution of the substrate
  • 2.6 Force and torque evolution
  • 2.6.1 Multiple phases of force and torque evolution
  • 2.6.2 Dependence of steady-state force and torque on processing conditions
  • 2.7 In situ visualization of material rotation and flow
  • 2.7.1 Footprint and material rotation
  • 2.7.2 Contact state and sticking coefficient
  • 2.8 Correlation of the material flow behavior to temperature, force, and torque evolution
  • 2.8.1 Influences of the contact state and material flow on heat generation
  • 2.8.2 Influences of the contact state and material flow on force and torque
  • 2.8.3 Factors governing the contact state and material flow behavior
  • 2.9 Summary
  • References
  • 3 Material flow phenomena
  • 3.1 Plasticity and finite deformation theory
  • 3.2 Elements of fluid mechanics.
  • 3.3 Previous experimental studies on material flow in friction stir welding
  • 3.4 Design of tracer experiments for material flow investigation in additive friction stir deposition
  • 3.5 Flow path of the center volume of the feed material
  • 3.5.1 Center tracer flow during initial material feeding
  • 3.5.2 Center tracer flow during steady-state deposition
  • 3.6 Flow path of the edge volume of the feed material
  • 3.6.1 Edge tracer flow during initial material feeding
  • 3.6.2 Edge tracer flow during steady-state deposition
  • 3.7 Material deformation and flow at the interface
  • 3.7.1 Surface and interface morphology
  • 3.7.2 Interfacial mixing
  • 3.8 Summary
  • References
  • 4 Dynamic microstructure evolution
  • 4.1 Elements of microstructure evolution
  • 4.2 Dynamic recrystallization mechanisms
  • 4.2.1 Discontinuous dynamic recrystallization
  • 4.2.2 Continuous dynamic recrystallization
  • 4.3 Thermomechanical history in additive friction stir deposition
  • 4.3.1 Stage A
  • 4.3.2 Stage B
  • 4.3.3 Stage C
  • 4.4 Characteristics of the resulting microstructures by additive friction stir deposition
  • 4.4.1 High stacking fault energy materials: Al and Mg
  • 4.4.2 Low (to medium) stacking fault energy materials: Inconel 625 and 316L stainless steel
  • 4.5 Dynamic microstructure evolution along the flow path of an Al-Cu alloy
  • 4.5.1 Microstructure characterization along the flow path of the center tracer
  • 4.5.2 Microstructure characterization along the flow path of the edge tracer
  • 4.5.3 Quantification of the overall trend
  • 4.6 Processing-microstructure linkages of Al-Mg-Si and Cu
  • 4.6.1 Microstructure characterization of Al-Mg-Si printed at various conditions
  • 4.6.2 Microstructure characterization of Cu printed at various conditions
  • 4.6.3 Analysis of the microstructure evolution mechanisms and trends.
  • 4.6.3.1 Origin of the different microstructure evolution mechanisms
  • 4.6.3.2 Origin of the process-microstructure linkage in Al-Mg-Si
  • 4.6.3.3 Origin of the process-microstructure linkage in Cu
  • 4.6.3.4 Origin of the texture differences
  • 4.7 Dynamic phase evolution
  • 4.8 Summary
  • References
  • 5 Effects of tool geometry
  • 5.1 A survey of tool effects in friction stir welding
  • 5.2 Tool types and geometries for additive friction stir deposition
  • 5.3 Effects of tool geometry on interface morphology
  • 5.4 Effects of tool geometry on microstructure
  • 5.5 Summary
  • References
  • 6 Beyond metals and alloys: additive friction stir deposition of metal matrix composites
  • 6.1 Introduction to metal matrix composites
  • 6.2 Current processing approaches to metal matrix composites
  • 6.2.1 Bulk processing
  • 6.2.1.1 Liquid-state processing: stir casting
  • 6.2.1.2 Liquid-state processing: squeeze casting
  • 6.2.1.3 Solid-state processing: powder metallurgy
  • 6.2.2 Additive production
  • 6.2.2.1 Powder bed fusion
  • 6.2.2.2 Directed energy deposition
  • 6.2.2.3 Sheet lamination
  • 6.3 Additive friction stir deposition of metal matrix composites
  • 6.3.1 Feeding strategy and printing principle
  • 6.3.2 Potential benefits
  • 6.4 Examples
  • 6.4.1 Cu-ZrO2 printed using a composite feed-rod
  • 6.4.2 Al-ZrO2, Al-SiC, and Cu-SiC composites printed by packing particles in the hollow feed-rod
  • 6.4.3 Al-SiC printed by auger feeding
  • 6.5 Limitations of this printing approach
  • 6.5.1 Maximum volume fraction of reinforcement
  • 6.5.2 Tool wear
  • 6.6 Summary
  • References
  • 7 Mechanical properties of the printed materials
  • 7.1 Elements of the mechanical behavior of materials
  • 7.2 Tensile properties of the printed metals and alloys
  • 7.2.1 Effects of precipitation strengthening
  • 7.2.2 Effects of postprocess aging.
  • 7.2.3 Effects of dislocation content
  • 7.2.4 Effects of grain size
  • 7.2.5 Two-phase alloys
  • 7.2.6 Gradient of the mechanical properties
  • 7.3 Fracture behavior
  • 7.4 Fatigue behavior
  • 7.5 Mechanical properties of bilayer structures
  • 7.6 Mechanical properties of printed metal matrix composites
  • 7.7 Summary
  • References
  • 8 Niche applications
  • 8.1 Structural repair
  • 8.1.1 Through-hole filling
  • 8.1.2 Groove filling
  • 8.1.3 Surface and divot repair
  • 8.1.4 Fastener hole repair
  • 8.2 Selective-area cladding on thin automotive sheet metals
  • 8.2.1 Cladding quality
  • 8.2.2 Thin substrate distortion
  • 8.3 Recycling
  • 8.3.1 Solid-state metal recycling background
  • 8.3.2 Friction stirring for solid-state recycling
  • 8.4 Large-scale additive manufacturing
  • 8.5 Printing and repair under harsh conditions
  • 8.6 Summary
  • References
  • 9 Future perspectives
  • 9.1 In-depth understanding of the underlying physics
  • 9.2 Material innovation
  • 9.3 Incorporation of artificial intelligence
  • 9.4 Summary
  • References
  • Index
  • Back Cover.