Cargando…

Closed nuclear fuel cycle with fast reactors : white book of Russian nuclear power /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Adamov, Evgenei O.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: [S.l.] : Academic Press, 2022.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Ia 4500
001 SCIDIR_on1336888718
003 OCoLC
005 20231120010655.0
006 m o d
007 cr un|---aucuu
008 220722s2022 xx o 000 0 eng d
040 |a YDX  |b eng  |c YDX  |d OPELS  |d SFB  |d OCLCF  |d UKMGB  |d UKAHL  |d OCLCQ  |d OCLCO 
015 |a GBC211986  |2 bnb 
016 7 |a 020468220  |2 Uk 
020 |a 9780323993098  |q (electronic bk.) 
020 |a 0323993095  |q (electronic bk.) 
020 |z 9780323993081 
020 |z 0323993087 
035 |a (OCoLC)1336888718 
050 4 |a TK9360 
082 0 4 |a 621.48335  |2 23 
245 0 0 |a Closed nuclear fuel cycle with fast reactors :  |b white book of Russian nuclear power /  |c edited by Evgenei O. Adamov. 
260 |a [S.l.] :  |b Academic Press,  |c 2022. 
300 |a 1 online resource 
336 |a text  |2 rdacontent 
337 |a computer  |2 rdamedia 
338 |a online resource  |2 rdacarrier 
588 0 |a Print version record. 
505 0 |a Front cover -- Half title -- Title -- Copyright -- Contents -- Preface -- Introduction -- Establishment of nuclear power -- Potential of nuclear power -- Current state of global nuclear power -- Problems of nuclear power -- Development of the safe growth strategy for nuclear power -- Basic principles of Strategy-2000 -- Alternative approaches to the nuclear power strategy -- Progress of Strategy-2000 implementation -- Strategy-2000 today -- Part I Global power generation and the role of nuclear power engineering -- Chapter 1 Power generation and sustainable development -- 1.1 Modern energy sources -- 1.2 Current peculiarities of energy consumption growth -- 1.3 Fossil organic fuel -- 1.4 Resource-related limitations of organic-based power engineering -- 1.5 Environmental restrictions of organic-based power engineering -- 1.6 Mineral nuclear fuel -- 1.7 Renewable energy sources -- 1.8 Thermonuclear fusion energy -- 1.9 Role of radiation risks in nuclear power and human-induced risks for the public -- Chapter 2 Role of nuclear power in the Russian fuel and energy industry -- 2.1 State of nuclear power in Russia -- 2.2 Forecast of the Energy Research Institute of the Russian Academy of Sciences-2016 -- 2.3 Estimates of nuclear power development in the world -- 2.4 Competitiveness of nuclear power in Russia -- Part II Basic components of a new technology platform for nuclear power engineering -- Chapter 3 Fuel cycles of nuclear power -- 3.1 Classification of nuclear fuel cycles -- 3.2 Open nuclear fuel cycle -- 3.3 Closed nuclear fuel cycle -- 3.4 Tasks solved in the closed NFC -- Chapter 4 Fuel supply -- 4.1 Effect of burnup depth -- 4.2 Role of uranium-plutonium fuel for thermal reactors -- 4.3 Systemic evaluation of the Russian nuclear power development scenarios with and without the use of REMIX fuel for VVERs. 
505 8 |a Chapter 5 Prevention of severe reactivity-related accidents -- 5.1 Chernobyl catastrophe -- 5.2 Dense fuel as a nuclear safety factor -- 5.3 Heavy coolant as a nuclear safety factor -- Chapter 6 Prevention of severe heat removal accidents -- 6.1 Accident at EBR-1 -- 6.2 Accident at Three Mile Island NPP (USA) -- 6.3 Accident at Mayak PA (South Ural, Russia) -- 6.4 Fukushima catastrophe (Japan) -- 6.5 Heavy coolant as a factor for prevention of severe heat removal accidents and explosions at NPPs -- 6.6 Primary circuit air heat exchanger for residual heat removal -- 6.7 Reactor designs preventing heat removal accidents -- Chapter 7 Codes for development and safety analysis of reactor plants -- 7.1 Design codes -- 7.2 New generation codes -- Chapter 8 SNF and RW handling as a risk factor for the public -- 8.1 Radiation-equivalent RW management principle -- 8.2 Transmutation of minor actinides -- 8.3 Transmutation nuclear fuel cycle -- Chapter 9 Radiation and radiological equivalence of radioactive waste in two-component nuclear power engineering -- 9.1 Equating lifetime radiation risks of possible cancer from RW and natural raw materials -- 9.2 Impact of uncertainty in the parameters of the annual radiation risk models on achievement of radiological equivalence in two-component nuclear energy -- 9.3 Uncertainty in the background morbidity and mortality rates -- 9.4 Effect of uncertainty of radiation doses magnitude on the radiological equivalence achievement -- Chapter 10 Technology support of the nonproliferation regime and conditions for export of the CNFC and FNR technologies -- Chapter 11 Economic competitiveness of innovative nuclear power -- 11.1 Requirements for competitiveness of FNRs with the CNFC -- 11.2 Effect of load following on the NPP economy -- Part III Nuclear fuel and closing of the nuclear fuel cycle. 
505 8 |a Chapter 12 Uranium and uranium-plutonium nuclear fuel -- 12.1 Uranium fuel -- 12.2 Uranium-plutonium nuclear fuel -- Chapter 13 Dense nuclear fuel for fast reactors -- 13.1 Metallic fuel -- 13.2 Carbide fuel -- 13.3 Nitride fuel international experience -- 13.4 Domestic experience in nitride fuel development prior to Proryv Project launching -- Chapter 14 Development of nitride fuel within the framework of Proryv Project -- 14.1 Requirements for the design of nitride fuel rod -- 14.2 Nitride manufacturing technologies -- 14.3 Nitride fuel studies -- 14.3.1 Reactor testing -- 14.4 Development of methods, codes, and criteria for substantiation of fuel performance -- Chapter 15 Mixed oxide fuel for fast reactors -- 15.1 Pellet technology -- 15.2 Vibration compaction technology -- 15.3 Experience of MOX fuel use in fast reactors -- 15.4 Industrial production of MOX fuel -- Chapter 16 Remix fuel -- 16.1 Modeling of nuclear fuel cycles -- 16.2 Manufacturing of the pilot batch of REMIX fuel rods -- 16.3 Tests of REMIX fuel in MIR reactor -- 16.4 Reprocessing of irradiated REMIX fuel -- Chapter 17 Adaptation of uranium-plutonium fuel fabrication technologies -- Chapter 18 Usage of the industry-specific fuel infrastructure -- 18.1 FSUE "Mayak PA" ("Paket" on RT-1, RT-1) -- 18.2 FSUE "MCP" (MOX, pilot demonstration facility) -- 18.3 JSC "Siberian Chemical Combine" (KEU-1, KEU-2, FRM) -- 18.4 JSC "SSC RIAR" -- 18.5 JSC "VNIINM" -- Chapter 19 Structural materials for fuel rod claddings -- 19.1 Studies for substantiation of fuel burnup increase -- 19.2 Studies within the framework of Proryv Project -- 19.3 Bench testing of dummy fuel rods (dummy fragments) including spacing elements (small-scale liquid-metal benches) -- corrosion in lead -- Chapter 20 SNF processing technologies -- 20.1 Requirements for the SNF processing technology in the CNFC. 
505 8 |a 20.2 Existing capacities for processing of SNF from thermal and fast reactors -- 20.3 Hydro-metallurgical technology for processing of SNF from thermal and fast reactors -- 20.4 Pyrochemical SNF processing technology -- 20.5 PH-process is a combined (pyro + hydro) processing technology for SNF from fast reactors -- 20.6 Americium and curium extraction and separation -- 20.7 SNF processing with the use of plasma separation -- Chapter 21 Radioactive waste management -- 21.1 SNF and HLW transportation -- 21.2 SNF and HLW storage -- 21.3 Radioactive waste generated in the course of NPP operation -- 21.4 Radioactive waste from SNF processing -- 21.5 HLW vitrification equipment -- 21.6 RW from the production facilities with increased plutonium content (as exemplified by PDEC nitride nuclear fuel fabrication module) -- 21.7 Disposal of radioactive waste -- Part IV Advanced reactor technologies and the nuclear power engineering infrastructure -- Chapter 22 New generation reactor technologies within the framework of Generation IV International Forum -- Chapter 23 Development of technologies based on fast reactors -- 23.1 Fast reactor development stages in Russia -- 23.2 BN-800 reactor and establishment of the closed NFC -- Chapter 24 Fast reactors within the framework of Proryv Project framework -- 24.1 Power unit with BREST-OD-300 pilot demonstration reactor plant -- 24.2 Power unit with sodium-cooled BN-1200 reactor -- 24.3 Conceptual design of the IPC with BR-1200 -- Chapter 25 Thermal reactors -- 25.1 Light-water reactors -- 25.2 Spectral regulation -- 25.3 VVER-S reactor technology -- 25.4 VVER-SKD reactor technology -- Chapter 26 Expansion of the nuclear power application scope -- 26.1 Prospects for medium-capacity NPPs -- 26.2 Prospects for low-capacity NPPs -- 26.3 Role of nuclear-powered heat supply. 
505 8 |a 26.4 Opportunities for nuclear power installations in power-intensive industry sectors -- Chapter 27 Alternative reactor technologies -- 27.1 Molten salt reactors -- 27.2 Fast reactors with the open NFC and TerraPower project -- 27.3 Subcritical accelerator-driven systems -- 27.4 Peculiarities of accelerator-driven systems -- Chapter 28 Superconducting power transmission technologies -- 28.1 Prospects for superconducting technologies -- 28.2 Possible levels of power transmitted along the long direct current line -- 28.3 Energy losses in the line -- 28.4 Cooling of the line with determination of the maximum distance between cryogenic stations -- 28.5 Cooling schemes for HTSC cable lines -- Chapter 29 Experimental facilities of nuclear power -- 29.1 Set of BFS test facilities -- 29.2 Refurbishment of BOR-60 reactor -- 29.3 Multipurpose research reactor MBIR -- Chapter 30 Digitalization in nuclear power -- 30.1 Digital technologies for modeling of NPE facilities -- 30.2 Digital technologies for nuclear facility development and life cycle management -- Chapter 31 Regulatory framework for the modern and future nuclear power -- 31.1 Regulatory framework for nuclear power in the Russian Federation -- 31.2 Peculiarities of the new nuclear power technology platform projects from the viewpoint of legal regulation -- 33.3 Regulatory framework analysis and improvement -- Part V Strategic guidelines for establishment of two-component nuclear power engineering -- Chapter 32 Optimal development scenarios for the Russian nuclear power -- 32.1 Basic provisions of scenario analysis -- 32.2 Source data for the scenario analysis -- Chapter 33 Comparative analysis of the Russian nuclear power development scenarios -- 33.1 The initial Russian nuclear power development scenario based on the existing technologies (Variant 0). 
650 0 |a Reactor fuel reprocessing. 
650 0 |a Fast reactors. 
650 6 |a Combustibles nucl�eaires irradi�es  |x Traitement.  |0 (CaQQLa)201-0073953 
650 6 |a R�eacteurs rapides.  |0 (CaQQLa)201-0015763 
650 7 |a Fast reactors  |2 fast  |0 (OCoLC)fst00921692 
650 7 |a Reactor fuel reprocessing  |2 fast  |0 (OCoLC)fst01090525 
700 1 |a Adamov, Evgenei O. 
776 0 8 |c Original  |z 0323993087  |z 9780323993081  |w (OCoLC)1268112085 
776 0 8 |i Print version:  |t Closed nuclear fuel cycle with fast reactors  |z 9780323993081  |w (OCoLC)1295112557 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780323993081  |z Texto completo