New frontiers of cardiovascular screening using unobtrusive sensors, AI, and IoT /
Clasificación: | Libro Electrónico |
---|---|
Formato: | eBook |
Idioma: | Inglés |
Publicado: |
London :
Academic Press,
2022.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Intro
- New Frontiers of Cardiovascular Screening using Unobtrusive Sensors, AI, and IoT
- Copyright
- Dedication
- Contents
- Foreword
- Preface
- About the authors
- Section 1: Sensors, AI and IoT in cardiovascular diseases
- Chapter 1: Cardiovascular conditions: The silent killer
- 1. Introduction
- 2. Industrial revolution and Healthcare 4.0
- 2.1. PhysioNet challenge
- 3. Chronic diseases and cardiovascular issues
- 4. Cardiovascular diseases: A silent killer
- 4.1. Factors enhancing cardiac risks
- 4.2. Heart rate, arrhythmia, and atrial fibrillation
- 4.3. Coronary artery disease and ischemic heart diseases
- 4.4. Cardiac fatigue and hypertension
- 4.4.1. Cardiac fatigue
- 4.4.2. Hypertension
- 4.4.3. Regulation of blood pressure
- 5. Sleep apnea and pulmonary conditions
- 6. Need for early screening and diagnosis
- 7. How sensing and AI can help
- 8. Devices: Surgical implants for cardiovascular monitoring and management
- 9. Analytics for screening and diagnosis
- 10. Putting it all together
- 11. Example of a real-world cardiovascular screening system
- References
- Further reading
- Chapter 2: Proliferation of a new generation of sensors: Smartphones and wearables
- 1. Introduction
- 2. Unobtrusive digital sensing
- 3. Electric or electromagnetic sensing
- 3.1. Acoustic and mechanical sensing
- 3.2. Biochemical sensing
- 4. Sensing the heart: An engineers perspective
- 4.1. Mechanical system
- 4.2. Circulatory system
- 4.3. Electrical system
- 4.4. Control system
- 4.5. Systems coming together
- 5. Photoplethysmogram: pulse oximetry
- 6. Phonocardiograms: digital stethoscope
- 6.1. History of heart sounds
- 6.2. Heart sounds
- 6.3. Conventional stethoscope
- 6.4. Digital stethoscope
- 6.5. Future of the stethoscope
- 7. ECG: Electrocardiograph.
- 7.1. Origination and pathways of electrical charges in the heart
- 7.2. 12 leads and Einthovens triangle
- 7.3. Basic building blocks of an ECG machine
- 8. Conclusion
- References
- Further reading
- Chapter 3: Sensor signal analytics
- 1. Introduction
- 2. Preprocessing
- 2.1. Signal conditioning
- 2.1.1. Hardware filtering
- 2.1.2. Amplification
- 2.1.3. Attenuation
- 2.2. Noise handling
- 2.2.1. Noise sources
- 2.2.2. Noise removal
- 2.2.3. Signal reconstruction
- 3. Decision making using AI
- 3.1. Supervised machine learning
- 3.2. Unsupervised machine learning
- 3.3. Splitting of training and test data
- 3.4. Feature engineering
- 3.4.1. Dimensionality reduction using principal component analysis
- 3.4.2. Independent component analysis
- 3.5. Popular machine learning algorithms
- 3.5.1. Logistic regression
- 3.5.2. Support vector machine
- 3.5.3. Decision tree
- 3.6. Deep learning in biomedical engineering
- 3.6.1. Neural network activation
- Binary step activation function
- Linear activation function
- Sigmoid activation function
- Hyperbolic tangent activation function (tanh)
- Rectified linear unit activation function
- Softmax function
- 3.6.2. Network hyperparameters
- 3.6.3. Recurrent neural networks
- 3.7. Semisupervised learning in biomedical signal processing
- 4. Further challenges
- 4.1. Handling unbalanced data
- 4.2. Clinical knowledge segmentation
- 5. Conclusion
- References
- Section 2: Disease screening
- Chapter 4: Abnormal heart rhythms
- 1. Introduction
- 2. Heart rate measurement using PPG and ECG
- 2.1. Preprocessing: Smartphone, wearable, and nearable
- 2.2. Frequency and time domain analysis
- 3. Arrhythmia detection using PPG and ECG
- 3.1. Signal conditioning
- 3.2. Feature engineering
- 4. Deep network for rhythm analysis
- 5. Conclusion
- References.
- Further reading
- Chapter 5: Heart blockage
- 1. Introduction
- 2. Correlation of heart blockage with ECG, PPG, and PCG
- 3. AI-based detection of chronic ischemic heart disease
- 3.1. Machine learning approaches
- 3.2. Deep learning approaches
- 4. Fusion of multiple sensors for classification
- 5. Patient metadata-based knowledge modeling
- 6. Conclusion
- References
- Further reading
- Chapter 6: Hypertension and cardiac fatigue
- 1. Introduction
- 2. Screening of hypertension from PPG and ECG
- 2.1. Electrical modeling of cardiovascular system
- 2.2. Other lumped models for simulation of arterial blood pressure
- 2.3. Regression modeling from PPG
- 3. Pulse transit time analysis from PPG and ECG
- 4. Cardiac fatigue from PPG and ECG
- 4.1. Why investigating cardiac fatigue is important
- 4.2. Sensing cardiac fatigue
- 4.3. Some interesting early results and path to the future
- 5. Conclusion
- References
- Chapter 7: Correlated diseases
- 1. Introduction
- 1.1. Sleep disorders
- 1.2. Chronic obstructive pulmonary disease
- 2. Sleep analysis
- 2.1. Sleep studies
- 2.1.1. Sleep stage classification
- Preprocessing
- Feature extraction
- Feature selection and classification
- 2.2. Sleep apnea and sleep arousal
- 2.2.1. Detection techniques
- 3. COPD
- 3.1. Conventional machine learning
- 3.2. Deep learning
- 4. Conclusion
- References
- Further reading
- Section 3: Future challenges
- Chapter 8: Looking at the future
- 1. Introduction
- 2. Trends for physiological sensing
- 2.1. Advances in noninvasive physiological sensing
- 2.1.1. Flexible electronics-based wearables
- 2.1.2. Implantables, ingestibles, and injectibles
- 2.1.3. Using the human body as a communication medium
- 2.1.4. Photoacoustic and hyperspectral sensing
- 2.1.5. Radar sensing and computational imaging
- 2.2. Nanobiosensing.
- 2.3. Genomic analytics
- 3. Trends for analytics and AI
- 3.1. Technology trends
- 3.1.1. AutoML
- 3.1.2. Edge AI
- 3.1.3. Neuromorphic computing
- 3.1.4. Explainable AI
- 3.2. Challenges
- 3.2.1. Privacy, transparency, and trust
- 3.2.2. Security
- 4. Future vision for cardiovascular health
- 4.1. A day in the life of a patient in 2030
- 4.2. A day in the life of a cardiologist in 2030
- References
- Index.