|
|
|
|
LEADER |
00000cam a2200000Ia 4500 |
001 |
SCIDIR_on1299143517 |
003 |
OCoLC |
005 |
20231120010634.0 |
006 |
m o d |
007 |
cr un|---aucuu |
008 |
220224s2022 ne o 000 0 eng d |
040 |
|
|
|a YDX
|b eng
|c YDX
|d OPELS
|d N$T
|d UKMGB
|d OCLCF
|d UKAHL
|d OCLCO
|d SFB
|d BDX
|d OCLCQ
|d OCLCO
|
015 |
|
|
|a GBC208572
|2 bnb
|
016 |
7 |
|
|a 020452169
|2 Uk
|
019 |
|
|
|a 1204138491
|a 1298850727
|a 1298882681
|a 1298934782
|a 1305367600
|
020 |
|
|
|a 9780128210758
|q (electronic bk.)
|
020 |
|
|
|a 0128210753
|q (electronic bk.)
|
020 |
|
|
|z 9780128210741
|
020 |
|
|
|a 0128210745
|
020 |
|
|
|a 9780128210741
|
035 |
|
|
|a (OCoLC)1299143517
|z (OCoLC)1204138491
|z (OCoLC)1298850727
|z (OCoLC)1298882681
|z (OCoLC)1298934782
|z (OCoLC)1305367600
|
050 |
|
4 |
|a TL545
|
082 |
0 |
4 |
|a 629.1
|2 23
|
245 |
0 |
0 |
|a Biomimicry for aerospace
|h [electronic resource] :
|b technologies and applications /
|c edited by Vikram Shyam, Marjan Eggermont, Aloysius F. Hepp.
|
260 |
|
|
|a Amsterdam :
|b Elsevier,
|c 2022.
|
300 |
|
|
|a 1 online resource
|
336 |
|
|
|a text
|2 rdacontent
|
336 |
|
|
|a still image
|2 rdacontent
|
337 |
|
|
|a computer
|2 rdamedia
|
338 |
|
|
|a online resource
|2 rdacarrier
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a Front Cover -- BIOMIMICRY FOR AEROSPACE -- BIOMIMICRY FOR AEROSPACE Technologies and Applications -- Copyright -- Contents -- Contributors -- Preface -- 1 -- Biomimicry in aerospace: Education, design and inspiration -- One -- Biomimicry and biodesign for innovation in future space colonization -- 1.1 Introduction -- 1.2 The entrepreneurial space industry -- 1.2.1 The entrepreneurial space industry urgently needs design -- 1.2.2 Habitability, static environments, and the need to create ad hoc solutions -- 1.2.3 Additive and in situ manufacturing in aerospace: Needs and implications -- 1.2.4 Next steps toward biodesign in space colonization -- 1.3 From biomimicry and bio-inspired design to bio-enhanced and biohybrid design, technology, and innovation -- 1.3.1 Next Nature, Material Ecology, and Biodesign -- 1.3.1.1 Next Nature -- 1.3.1.2 Material Ecology -- 1.3.1.3 Biodesign -- 1.3.2 Hybrid approaches to nature, culture, and emerging technologies for aerospace -- 1.3.3 Other considerations and potential future implications -- 1.4 Applied research into biomimetic and algorithmic design -- 1.4.1 How algorithmic design is enhancing the biomimetic approach -- 1.4.2 Behavioral protocols: using inner and outer forces -- 1.4.3 Behavioral protocols: Absorbing the context -- 1.4.4 Bio-affected protocols and in situ manufacturing technologies: A potential for future planetary colonization -- 1.5 Bio-inspired, bio-enhanced, and biohybrid engineering: Speculative design concepts for space colonization -- 1.6 Current research in the Dubai Institute of Design and Innovation: Case studies with undergraduate students -- 1.6.1 Case study one: "Cryo-Slug" -- 1.6.2 Case study two: "Growing Materials" -- 1.7 Conclusions -- Acknowledgments -- References -- TWO -- A bio-inspired design and space challenges cornerstone project -- 2.1 Introduction -- 2.2 NASA challenges.
|
505 |
8 |
|
|a 2.3 Ask Nature strategy research -- 2.4 Challenges and strategies diagrams -- 2.5 Strategies illustration -- 2.6 Designing and drawing the bio-inspired design solution -- 2.7 Data analysis -- 2.8 Conclusion -- Acknowledgments -- References -- THREE -- Toward systematic nature-inspired problem-solving for aerospace applications and beyond -- 3.1 Introduction -- 3.2 Biomimicry tool landscape -- 3.3 Virtual interchange for Nature-inspired Exploration: 2019 Biocene Tools Workshop -- 3.3.1 Purpose of the Biocene Tools Workshop -- 3.3.2 Workshop objectives and activities -- 3.3.3 Biocene meeting output -- 3.3.4 Biocene meeting results -- 3.4 Analysis and discussion -- 3.5 Conclusions and future directions -- Acknowledgments -- References -- Four -- Parallels in communication technology and natural phenomena -- 4.1 Introduction -- 4.2 The Schmitt Trigger: Biomimetics and synchronicity -- 4.3 Sense and avoid: Collective motion in bird flocks and aircraft formations -- 4.4 Periodic structures: Crystals and electronic filters -- 4.5 Charles Darwin: Butterflies, genetic algorithms and microwave antennas -- 4.6 Color and light: Butterflies and dichroic mirrors -- 4.7 Smart materials: Artificial muscles and antennas -- 4.8 Whispers: Cathedrals and virus detectors -- 4.9 Spookiness: Quantum entanglement and advanced cryptography -- 4.10 Noise: Communications -- 4.11 Summary and conclusions -- References -- Five -- Atacama Desert: Genius of place -- 5.1 Atacama Desert -- 5.1.1 Atacama aridity -- 5.1.2 Natural history of Atacama Desert -- 5.1.3 Operating conditions -- 5.1.4 Biogeochemical cycles in the Atacama Desert -- 5.1.4.1 Carbon cycle -- 5.1.4.2 Nitrogen cycle -- 5.1.4.3 Iodine cycle -- 5.2 Strategies adopted by species to survive in the Atacama Desert -- 5.2.1 Llareta (Azorella compacta) -- 5.2.1.1 Llareta biological strategy-adaptation.
|
505 |
8 |
|
|a 5.2.1.2 Llareta design principles -- 5.2.1.3 Llareta application ideas -- 5.2.1.4 Llareta further design considerations -- 5.2.2 Desert Holly (Atriplex atacamensis) -- 5.2.2.1 Desert holly biological strategy-adaptation -- 5.2.2.2 Desert holly design principles -- 5.2.2.3 Desert holly application ideas -- 5.2.3 Tamarugo (Prosopis tamarugo) -- 5.2.3.1 Tamarugo biological strategy-adaptation -- 5.2.3.2 Tamarugo design principles -- 5.2.3.3 Tamarugo application ideas -- 5.2.4 Desert saltgrass (Distichlis spicata) -- 5.2.4.1 Desert saltgrass biological strategy-adaptation -- 5.2.4.2 Desert saltgrass design principles -- 5.2.4.3 Desert saltgrass application ideas -- 5.2.5 Vic�ua (Vicugna vicugna) -- 5.2.5.1 Vic�ua biological strategy-adaptation -- 5.2.5.2 Vic�ua design principles -- 5.2.5.3 Vic�ua application ideas -- 5.2.5.4 Vic�ua further design considerations -- 5.2.6 Guanaco (Lama guanicoe) -- 5.2.6.1 Guanaco biological strategy-adaptation -- 5.2.6.2 Guanaco design principles -- 5.2.6.3 Guanaco application ideas -- 5.3 Discussion -- 5.4 Conclusions -- References -- 2 -- Bio-inspired design: Aerospace and other practical applications -- SIX -- Bio-inspired design and additive manufacturing of cellular materials -- 6.1 Introduction -- 6.1.1 Cellular materials -- 6.1.2 Additive manufacturing -- 6.1.3 Bio-inspired design -- 6.2 Cellular materials design -- 6.2.1 Cell selection -- 6.2.2 Cell size distribution -- 6.2.3 Cell parameters -- 6.2.4 Integration -- 6.3 Cellular materials in nature -- 6.3.1 Unit cell selection -- 6.3.1.1 Tessellation -- 6.3.1.2 Elements -- 6.3.1.3 Connectivity -- 6.3.2 Cell size distribution -- 6.3.3 Cell parameter optimization -- 6.3.4 Integration -- 6.4 Additive manufacturing design constraints -- 6.4.1 Feature resolution and fidelity -- 6.4.2 Dimensional accuracy -- 6.4.3 Scale dependence -- 6.4.4 Orientation dependence.
|
505 |
8 |
|
|a 6.5 Toward a methodology: Honeycomb panel case study -- 6.5.1 Morphology -- 6.5.2 Design -- 6.5.3 Validation -- 6.6 Summary -- References -- Seven -- Biomimetic course design exploration for improved NASA zero gravity exercise equipment -- 7.1 Introduction -- 7.2 University of Akron biomimicry course: Response to NASA design challenge -- 7.2.1 Course framework -- 7.2.2 Background of NASA's design challenge -- 7.2.3 Problem description -- 7.3 Biomimetic improvements to the exercise device box and accessories -- 7.3.1 Selection of biological role models -- 7.3.2 Foldable structures for improved functionality -- 7.3.2.1 Deployable honeycomb sandwich structures -- 7.3.2.2 Unfolding pattern of beach leaves -- 7.3.2.3 Mechanics of the primary feathers of pigeon wings -- 7.3.2.4 Alternative design suggestions -- 7.3.3 Hook and loop fastener shoes for increased exercise adhesion -- 7.3.4 Exercise program -- 7.4 Biomimetic improvements to ropes and cables -- 7.4.1 Biological model refinement -- 7.4.2 Fish fin-inspired modular rope design -- 7.4.3 Hierarchical structuring of ropes -- 7.4.4 Sandfish-inspired abrasion reduction of ropes -- 7.4.5 Pulley lubrication using electroosmosis -- 7.5 Conclusions and future work -- Acknowledgments -- References -- Eight -- Biomimetics of boxfish: Designing an aerodynamically efficient passenger car -- 8.1 Introduction -- 8.2 Methodology -- 8.2.1 Biomimetic design process -- 8.2.2 Aerodynamics of a yellow boxfish -- 8.2.2.1 Simplified boxfish model -- 8.2.2.2 Wind tunnel study -- 8.2.3 Biomimetic design of a one-box type car -- 8.2.4 Numerical study -- 8.2.4.1 Computational domain -- 8.2.4.2 Meshing -- 8.2.4.3 Boundary conditions and solver setup -- 8.3 Results and discussion -- 8.3.1 Boxfish aerodynamics -- 8.3.2 Aerodynamics of the biomimetic car -- 8.3.3 Computational fluid dynamics comparison study.
|
505 |
8 |
|
|a 8.3.3.1 Pressure distribution -- 8.3.3.2 Pressure contour -- 8.3.3.3 Velocity contour -- 8.3.3.4 Streamlines -- 8.4 Conclusions -- References -- Nine -- Thresholds of nature: How understanding one of nature's penultimate laws led to the PowerCone, a biomimetic ... -- 9.1 Background-thresholds abound -- 9.1.1 The generalized Navier-Stokes equation -- 9.2 The moment of inspiration -- 9.3 Maple key aerodynamics -- 9.4 The first prototypes -- 9.5 Wind tunnel testing a PowerCone -- 9.6 Time-Dependent Energy Transfer and thresholds -- 9.7 Changing fluids: Tidal testing a PowerCone -- 9.8 New computational frontiers: PowerCone -- 9.9 Conclusion: Full-Scale Testing -- References -- 3 -- Biomimicry and foundational aerospace disciplines -- Ten -- Slithering across worlds-snake-inspired robots for extraterrestrial exploration -- 10.1 Bio-inspired design -- 10.2 Identifying the problem-traversing other worlds -- 10.3 Searching planetary analogs for a natural model -- 10.4 Snake locomotion-turning obstacles into advantages -- 10.4.1 Lateral undulation -- 10.4.2 Sidewinding -- 10.4.3 Concertina -- 10.4.4 Rectilinear -- 10.4.5 More than four modes -- 10.4.6 Unknowns -- 10.5 Replicating snakes' success-bio-inspired snake robots -- 10.6 Applications and mission profiles -- 10.7 Conclusion: Bio-inspired snake robots for extraterrestrial exploration -- References -- Eleven -- Biomimetic advances in photovoltaics with potential aerospace applications -- 11.1 Introduction -- 11.2 Solar applications in aerospace -- 11.2.1 Background and short history -- 11.2.2 Solar cell figures of merit -- 11.2.3 Unique issues for space solar cells -- 11.3 Classes of solar cells -- 11.3.1 Conventional solar cells -- 11.3.2 Excitonic solar cells -- 11.3.3 Majority versus minority carrier devices -- 11.4 Losses in solar cells -- 11.4.1 Intrinsic losses -- 11.4.2 Extrinsic losses.
|
650 |
|
0 |
|a Aerospace engineering.
|
650 |
|
0 |
|a Biomimicry.
|
650 |
|
2 |
|a Bionics
|0 (DNLM)D001701
|
650 |
|
6 |
|a A�erospatiale (Ing�enierie)
|0 (CaQQLa)201-0277933
|
650 |
|
6 |
|a Bionique.
|0 (CaQQLa)201-0044293
|
650 |
|
7 |
|a Aerospace engineering
|2 fast
|0 (OCoLC)fst00798623
|
650 |
|
7 |
|a Biomimicry
|2 fast
|0 (OCoLC)fst01763571
|
700 |
1 |
|
|a Shyam, Vikram.
|
700 |
1 |
|
|a Eggermont, Marjan.
|
700 |
1 |
|
|a Hepp, Aloysius F.
|
776 |
0 |
8 |
|i Print version:
|z 0128210745
|z 9780128210741
|w (OCoLC)1204138491
|
776 |
0 |
8 |
|i Print version:
|t Biomimicry for aerospace
|z 9780128210741
|w (OCoLC)1295099961
|
856 |
4 |
0 |
|u https://sciencedirect.uam.elogim.com/science/book/9780128210741
|z Texto completo
|