Cargando…

Hybrid nanofluids : preparation, characterization and applications /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Said, Zafar
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam : Elsevier, 2022.
Colección:Micro & nano technologies.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Intro
  • Hybrid Nanofluids: Preparation, Characterization and Applications
  • Copyright
  • Contents
  • Contributors
  • Preface
  • Acknowledgments
  • Chapter 1: Introduction to hybrid nanofluids
  • 1.1. Introduction
  • 1.1.1. Development of nanomaterials and nanofluids
  • 1.1.2. Drawbacks of mono nanofluids
  • 1.1.3. Development of hybrid nanofluids
  • 1.2. Preparation of hybrid nanofluids
  • 1.3. Properties of hybrid nanofluids
  • 1.3.1. Thermal conductivity
  • 1.3.2. Viscosity
  • 1.3.3. Density
  • 1.3.4. Specific heat capacity
  • 1.3.5. Thermal diffusivity
  • 1.3.6. Electrical, magnetic, dielectric
  • 1.4. Applications of hybrid nanofluids
  • 1.4.1. Electronic cooling
  • 1.4.2. Solar collectors
  • 1.4.3. Heat exchangers
  • 1.4.4. Nuclear PWR
  • 1.4.5. Engine cooling
  • 1.4.6. Refrigeration
  • 1.4.7. Machining
  • 1.4.8. Desalination
  • 1.5. Challenges and outlook
  • 1.6. Conclusion
  • References
  • Chapter 2: Preparation and stability of hybrid nanofluids
  • 2.1. Introduction
  • 2.1.1. One-step method
  • 2.1.2. Two-step method
  • 2.1.3. Comparison of one-step and two-step methods
  • 2.2. Stability of nanofluids
  • 2.2.1. Stability evaluation methods
  • Sedimentation method
  • Centrifugation method
  • Zeta potential method
  • Spectral absorbance analysis
  • Thermal conductivity measurement
  • Electron microscopy
  • 2.2.2. Stability enhancement methods
  • Ultrasonication
  • Addition of surfactants
  • Surface modification of nanoparticles
  • pH change
  • 2.3. Challenges and outlook
  • 2.4. Summary
  • References
  • Chapter 3: Thermophysical, electrical, magnetic, and dielectric properties of hybrid nanofluids
  • 3.1. Thermophysical properties
  • 3.1.1. Thermal conductivity
  • 3.1.2. Viscosity of hybrid nanofluids
  • 3.1.3. Specific heat and density of hybrid nanofluids
  • 3.1.4. Magnetic property
  • 3.1.5. Dielectric property
  • 3.2. Conclusion
  • Acknowledgments
  • References
  • Chapter 4: Hydrothermal properties of hybrid nanofluids
  • 4.1. Introduction
  • 4.2. Surface tension
  • 4.3. Friction factor
  • 4.4. Pressure drop
  • 4.5. Pumping power
  • 4.6. Fouling factor of nanofluid
  • 4.7. Conclusions and challenges
  • Acknowledgments
  • References
  • Chapter 5: Rheological behavior of hybrid nanofluids
  • 5.1. Introduction
  • 5.2. Experimental and numerical studies on rheology
  • 5.3. Effects of various parameters on the rheology of hybrid nanofluids
  • 5.3.1. Temperature
  • 5.3.2. Particle size and shape
  • 5.3.3. Volume concentration
  • 5.3.4. Other factors
  • 5.4. Conclusion and future outlook
  • References
  • Chapter 6: Radiative transport of hybrid nanofluid
  • Subscript
  • 6.1. Introduction
  • 6.2. Optical properties
  • 6.2.1. Rayleigh scattering approximation
  • 6.2.2. Maxwell-Garnett approximation
  • 6.2.3. Mie scattering approximation
  • 6.3. Radiative transfer
  • 6.4. Effect of different parameters on optical properties
  • 6.4.1. Effect of particle size