Hybrid nanofluids : preparation, characterization and applications /
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Amsterdam :
Elsevier,
2022.
|
Colección: | Micro & nano technologies.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Intro
- Hybrid Nanofluids: Preparation, Characterization and Applications
- Copyright
- Contents
- Contributors
- Preface
- Acknowledgments
- Chapter 1: Introduction to hybrid nanofluids
- 1.1. Introduction
- 1.1.1. Development of nanomaterials and nanofluids
- 1.1.2. Drawbacks of mono nanofluids
- 1.1.3. Development of hybrid nanofluids
- 1.2. Preparation of hybrid nanofluids
- 1.3. Properties of hybrid nanofluids
- 1.3.1. Thermal conductivity
- 1.3.2. Viscosity
- 1.3.3. Density
- 1.3.4. Specific heat capacity
- 1.3.5. Thermal diffusivity
- 1.3.6. Electrical, magnetic, dielectric
- 1.4. Applications of hybrid nanofluids
- 1.4.1. Electronic cooling
- 1.4.2. Solar collectors
- 1.4.3. Heat exchangers
- 1.4.4. Nuclear PWR
- 1.4.5. Engine cooling
- 1.4.6. Refrigeration
- 1.4.7. Machining
- 1.4.8. Desalination
- 1.5. Challenges and outlook
- 1.6. Conclusion
- References
- Chapter 2: Preparation and stability of hybrid nanofluids
- 2.1. Introduction
- 2.1.1. One-step method
- 2.1.2. Two-step method
- 2.1.3. Comparison of one-step and two-step methods
- 2.2. Stability of nanofluids
- 2.2.1. Stability evaluation methods
- Sedimentation method
- Centrifugation method
- Zeta potential method
- Spectral absorbance analysis
- Thermal conductivity measurement
- Electron microscopy
- 2.2.2. Stability enhancement methods
- Ultrasonication
- Addition of surfactants
- Surface modification of nanoparticles
- pH change
- 2.3. Challenges and outlook
- 2.4. Summary
- References
- Chapter 3: Thermophysical, electrical, magnetic, and dielectric properties of hybrid nanofluids
- 3.1. Thermophysical properties
- 3.1.1. Thermal conductivity
- 3.1.2. Viscosity of hybrid nanofluids
- 3.1.3. Specific heat and density of hybrid nanofluids
- 3.1.4. Magnetic property
- 3.1.5. Dielectric property
- 3.2. Conclusion
- Acknowledgments
- References
- Chapter 4: Hydrothermal properties of hybrid nanofluids
- 4.1. Introduction
- 4.2. Surface tension
- 4.3. Friction factor
- 4.4. Pressure drop
- 4.5. Pumping power
- 4.6. Fouling factor of nanofluid
- 4.7. Conclusions and challenges
- Acknowledgments
- References
- Chapter 5: Rheological behavior of hybrid nanofluids
- 5.1. Introduction
- 5.2. Experimental and numerical studies on rheology
- 5.3. Effects of various parameters on the rheology of hybrid nanofluids
- 5.3.1. Temperature
- 5.3.2. Particle size and shape
- 5.3.3. Volume concentration
- 5.3.4. Other factors
- 5.4. Conclusion and future outlook
- References
- Chapter 6: Radiative transport of hybrid nanofluid
- Subscript
- 6.1. Introduction
- 6.2. Optical properties
- 6.2.1. Rayleigh scattering approximation
- 6.2.2. Maxwell-Garnett approximation
- 6.2.3. Mie scattering approximation
- 6.3. Radiative transfer
- 6.4. Effect of different parameters on optical properties
- 6.4.1. Effect of particle size