|
|
|
|
LEADER |
00000cam a2200000 a 4500 |
001 |
SCIDIR_on1292353475 |
003 |
OCoLC |
005 |
20231120010627.0 |
006 |
m o d |
007 |
cr un|---aucuu |
008 |
220115s2022 ne o 000 0 eng d |
040 |
|
|
|a EBLCP
|b eng
|e pn
|c EBLCP
|d YDX
|d OPELS
|d EBLCP
|d UKAHL
|d OCLCO
|d OCLCF
|d UKMGB
|d OCLCQ
|d N$T
|d OCLCQ
|d OCLCO
|
015 |
|
|
|a GBC1I6299
|2 bnb
|
016 |
7 |
|
|a 020387563
|2 Uk
|
019 |
|
|
|a 1291288825
|a 1291312081
|a 1294294380
|
020 |
|
|
|a 0323855717
|
020 |
|
|
|a 9780323855716
|q (electronic bk.)
|
020 |
|
|
|z 9780323858366
|
035 |
|
|
|a (OCoLC)1292353475
|z (OCoLC)1291288825
|z (OCoLC)1291312081
|z (OCoLC)1294294380
|
050 |
|
4 |
|a TJ853.4.M53
|
082 |
0 |
4 |
|a 620.106
|
245 |
0 |
0 |
|a Hybrid nanofluids :
|b preparation, characterization and applications /
|c edited by Zafar Said.
|
260 |
|
|
|a Amsterdam :
|b Elsevier,
|c 2022.
|
300 |
|
|
|a 1 online resource (280 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Micro and Nano Technologies
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a Intro -- Hybrid Nanofluids: Preparation, Characterization and Applications -- Copyright -- Contents -- Contributors -- Preface -- Acknowledgments -- Chapter 1: Introduction to hybrid nanofluids -- 1.1. Introduction -- 1.1.1. Development of nanomaterials and nanofluids -- 1.1.2. Drawbacks of mono nanofluids -- 1.1.3. Development of hybrid nanofluids -- 1.2. Preparation of hybrid nanofluids -- 1.3. Properties of hybrid nanofluids -- 1.3.1. Thermal conductivity -- 1.3.2. Viscosity -- 1.3.3. Density -- 1.3.4. Specific heat capacity -- 1.3.5. Thermal diffusivity
|
505 |
8 |
|
|a 1.3.6. Electrical, magnetic, dielectric -- 1.4. Applications of hybrid nanofluids -- 1.4.1. Electronic cooling -- 1.4.2. Solar collectors -- 1.4.3. Heat exchangers -- 1.4.4. Nuclear PWR -- 1.4.5. Engine cooling -- 1.4.6. Refrigeration -- 1.4.7. Machining -- 1.4.8. Desalination -- 1.5. Challenges and outlook -- 1.6. Conclusion -- References -- Chapter 2: Preparation and stability of hybrid nanofluids -- 2.1. Introduction -- 2.1.1. One-step method -- 2.1.2. Two-step method -- 2.1.3. Comparison of one-step and two-step methods -- 2.2. Stability of nanofluids -- 2.2.1. Stability evaluation methods
|
505 |
8 |
|
|a Sedimentation method -- Centrifugation method -- Zeta potential method -- Spectral absorbance analysis -- Thermal conductivity measurement -- Electron microscopy -- 2.2.2. Stability enhancement methods -- Ultrasonication -- Addition of surfactants -- Surface modification of nanoparticles -- pH change -- 2.3. Challenges and outlook -- 2.4. Summary -- References -- Chapter 3: Thermophysical, electrical, magnetic, and dielectric properties of hybrid nanofluids -- 3.1. Thermophysical properties -- 3.1.1. Thermal conductivity -- 3.1.2. Viscosity of hybrid nanofluids
|
505 |
8 |
|
|a 3.1.3. Specific heat and density of hybrid nanofluids -- 3.1.4. Magnetic property -- 3.1.5. Dielectric property -- 3.2. Conclusion -- Acknowledgments -- References -- Chapter 4: Hydrothermal properties of hybrid nanofluids -- 4.1. Introduction -- 4.2. Surface tension -- 4.3. Friction factor -- 4.4. Pressure drop -- 4.5. Pumping power -- 4.6. Fouling factor of nanofluid -- 4.7. Conclusions and challenges -- Acknowledgments -- References -- Chapter 5: Rheological behavior of hybrid nanofluids -- 5.1. Introduction -- 5.2. Experimental and numerical studies on rheology
|
505 |
8 |
|
|a 5.3. Effects of various parameters on the rheology of hybrid nanofluids -- 5.3.1. Temperature -- 5.3.2. Particle size and shape -- 5.3.3. Volume concentration -- 5.3.4. Other factors -- 5.4. Conclusion and future outlook -- References -- Chapter 6: Radiative transport of hybrid nanofluid -- Subscript -- 6.1. Introduction -- 6.2. Optical properties -- 6.2.1. Rayleigh scattering approximation -- 6.2.2. Maxwell-Garnett approximation -- 6.2.3. Mie scattering approximation -- 6.3. Radiative transfer -- 6.4. Effect of different parameters on optical properties -- 6.4.1. Effect of particle size
|
500 |
|
|
|a 6.4.2. Effect of volume fraction.
|
650 |
|
0 |
|a Nanofluids.
|
650 |
|
0 |
|a Nanofluids
|x Industrial applications.
|
650 |
|
6 |
|a Nanofluides.
|0 (CaQQLa)000259674
|
650 |
|
6 |
|a Nanofluides
|0 (CaQQLa)000259674
|x Applications industrielles.
|0 (CaQQLa)201-0374039
|
650 |
|
7 |
|a Nanofluids
|2 fast
|0 (OCoLC)fst01742507
|
700 |
1 |
|
|a Said, Zafar.
|
776 |
0 |
8 |
|i Print version:
|a Said, Zafar.
|t Hybrid Nanofluids.
|d San Diego : Elsevier, �2022
|z 9780323858366
|
830 |
|
0 |
|a Micro & nano technologies.
|
856 |
4 |
0 |
|u https://sciencedirect.uam.elogim.com/science/book/9780323858366
|z Texto completo
|