Cargando…

CYCLIC PLASTICITY OF METALS modeling fundamentals and applications.

Cyclic Plasticity of Metals: Modeling Fundamentals and Applications provides an exhaustive overview of the fundamentals and applications of various cyclic plasticity models including forming and spring back, notch analysis, fatigue life prediction, and more. Covering metals with an array of differen...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Jahed, Hamid, Roostaei, Ali
Formato: Electrónico eBook
Idioma:Inglés
Publicado: [S.l.] : ELSEVIER, 2021.
Colección:Elsevier series on plasticity of materials
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Front Cover
  • Cyclic Plasticity of Metals
  • Copyright
  • Contents
  • List of contributors
  • Foreword
  • Preface
  • Part I Introduction
  • 1 Experimental observations in cyclic loading of metals
  • 1.1 Introduction
  • 1.2 Bauschinger phenomenon
  • 1.2.1 Early reverse yielding
  • 1.2.2 Transient hardening and permanent softening
  • 1.2.3 Hardening stagnation
  • 1.2.4 Microstructure link
  • 1.3 Cyclic hardening/softening
  • 1.3.1 Fully-reversed loading
  • 1.3.2 Additional nonproportional hardening
  • 1.3.3 Microstructure link
  • 1.4 Mean stress/strain response evolution
  • 1.4.1 Mean stress relaxation
  • 1.4.2 Ratcheting
  • 1.4.3 Microstructure link
  • 1.5 Direction-dependent behavior
  • 1.5.1 Tension-compression asymmetry
  • 1.5.2 Directional anisotropy
  • 1.5.3 Microstructure link
  • 1.6 Masing behavior
  • 1.7 Closing remarks
  • References
  • 2 Fundamentals of cyclic plasticity models
  • 2.1 States of stress and strain
  • 2.1.1 Stress tensors
  • 2.1.1.1 Types of forces
  • 2.1.1.2 Stress at a point
  • 2.1.1.3 Components of stress
  • 2.1.1.4 Stress on oblique planes
  • 2.1.1.5 Principal stresses
  • 2.1.1.6 Octahedral shear stress
  • 2.1.1.7 Deviatoric stress tensor
  • 2.1.1.8 Equilibrium equations
  • 2.1.2 Strain tensors
  • 2.1.2.1 Displacement and strain
  • 2.1.2.2 Strain invariants
  • 2.1.2.3 Compatibility equations
  • 2.2 Stress-strain relations
  • 2.2.1 Elasticity
  • 2.2.1.1 Elastic material constants
  • 2.2.1.2 Generalized Hooke law of elasticity
  • 2.2.1.3 Navier-Cauchy equations of elasticity
  • 2.2.2 Yield criteria
  • 2.2.2.1 Tresca yield criterion
  • 2.2.2.2 Von Mises yield criterion
  • 2.2.2.3 State of loading
  • 2.2.2.4 Consistency condition
  • 2.2.2.5 Flow rule
  • 2.2.3 Plasticity
  • 2.2.3.1 Stress-strain curves
  • 2.2.3.2 Multiaxial loading
  • 2.2.3.3 Total deformation plasticity
  • 2.2.3.4 Incremental plasticity
  • 2.3 Hardening rules
  • 2.3.1 Isotropic hardening
  • 2.3.2 Kinematic hardening
  • 2.3.2.1 Prager rule
  • 2.3.2.2 Ziegler rule
  • 2.3.2.3 Armstrong-Frederick rule
  • 2.3.2.4 Mr�oz multisurface model
  • 2.3.2.5 Garud modification
  • 2.3.3 Combined hardening
  • 2.4 Closing remarks
  • References
  • Part II Cyclic plasticity models
  • 3 Multisurface cyclic plasticity
  • 3.1 Introduction
  • 3.2 General framework for small strains based on stored energies and elastic corrector rates
  • 3.3 Overlay and nested surface models. The Mr�oz model
  • 3.4 A translation rule for an implicit implementation of the Mr�oz model
  • 3.5 Multisurface model using Prager translation rule
  • 3.6 Connection with subloading and bounding surface models
  • 3.7 Rheology-based models without explicit backstress
  • 3.8 Comparison of multisurface models for multiaxial cyclic behavior
  • 3.9 Large strains formulation of Besseling models
  • 3.10 Concluding remarks
  • References
  • 4 Two-surface cyclic plasticity
  • 4.1 Introduction
  • 4.2 Fundamentals of two-surface plasticity