|
|
|
|
LEADER |
00000cam a2200000 a 4500 |
001 |
SCIDIR_on1283948516 |
003 |
OCoLC |
005 |
20231120010614.0 |
006 |
m o d |
007 |
cr |n||||||||| |
008 |
211107s2022 enk o 000 0 eng d |
040 |
|
|
|a YDX
|b eng
|e pn
|c YDX
|d OPELS
|d OCLCF
|d OCLCO
|d OCLCQ
|d OCLCO
|d K6U
|d SFB
|d OCLCQ
|d OCLCO
|
019 |
|
|
|a 1284288860
|a 1284837939
|a 1284878276
|
020 |
|
|
|a 9780081028643
|q (electronic bk.)
|
020 |
|
|
|a 0081028644
|q (electronic bk.)
|
020 |
|
|
|z 9780081028476
|
020 |
|
|
|z 0081028474
|
035 |
|
|
|a (OCoLC)1283948516
|z (OCoLC)1284288860
|z (OCoLC)1284837939
|z (OCoLC)1284878276
|
050 |
|
4 |
|a TJ255
|
082 |
0 |
4 |
|a 621.4022
|2 23
|
245 |
0 |
0 |
|a Salinity gradient heat engines /
|c edited by Alessandro Tamburini, Andrea Cipollina, Giorgio Micale.
|
260 |
|
|
|a Duxford :
|b Woodhead Publishing,
|c [2022]
|
300 |
|
|
|a 1 online resource
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Woodhead Publishing series in energy
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a Intro -- Salinity Gradient Heat Engines -- Copyright -- Contents -- Contributors -- Preface -- Chapter 1: Salinity gradient heat engines: An innovative concept for waste heat valorization -- 1.1. Background and motivation -- 1.2. What is salinity gradient energy? -- 1.3. Salinity gradient heat engines: Introduction, fundamentals, and classification -- 1.3.1. Introduction -- 1.3.2. Fundamentals and key performance parameters -- 1.3.3. Classification -- 1.3.3.1. Power units -- Osmotic heat engine (OHE) -- Reverse electrodialysis heat engine (REDHE) -- Other SGP engines or special engines -- 1.3.3.2. Regeneration strategies -- Solvent extraction strategy (full details are provided in Chapter 5) -- Salt extraction strategy (full details are provided in Chapter 6) -- 1.4. Chapters outline -- References -- Chapter 2: The state of art of conventional and nonconventional heat engines -- 2.1. General information -- 2.2. Power plants -- 2.2.1. Steam prime mover plants -- 2.2.1.1. Methods for increasing efficiency -- Increase of the inlet turbine temperature -- Reduction of condensation pressure -- Increase of the maximum pressure of the cycle -- Resuperheating -- Regeneration -- 2.2.2. Gas power plants -- 2.2.2.1. Open cycle -- 2.2.2.2. Closed cycle -- 2.2.2.3. Regeneration -- 2.2.2.4. Interrefrigeration and postcombustion -- 2.2.3. Combined cycle -- 2.2.3.1. Introduction -- 2.2.3.2. Layout -- 2.2.4. Organic Rankine cycle -- 2.2.5. Kalina cycle -- 2.2.6. Stirling cycle -- 2.2.7. Direct conversion of heat into electricity by means of thermoelectric generators -- 2.2.8. Direct conversion of heat into electricity by means of magnetohydrodynamic power generators -- 2.2.9. Heat recovery and novel technologies to produce power -- 2.2.10. Low- and high-temperature fuel cells -- 2.3. Conclusions -- References -- Chapter 3: Osmotic heat engine (OHE).
|
505 |
8 |
|
|a 3.1. Fundamentals of pressure-retarded osmosis and osmotic heat engine -- 3.1.1. Introduction -- 3.1.2. Analysis of single-stage PRO ignoring concentration polarization -- 3.1.3. Analysis of single-stage PRO accounting for concentration polarization -- 3.1.4. Analysis of multistage PRO design -- 3.2. Salt selection -- 3.3. Process couplings in OHE -- 3.3.1. Solvent extraction method -- 3.3.1.1. PRO-MD -- 3.3.1.2. PRO-RO -- 3.3.1.3. PRO-LIS -- 3.3.2. Salt extraction method -- 3.3.2.1. PRO-thermolytic -- 3.3.2.2. PRO precipitation -- 3.4. Perspectives -- References -- Chapter 4: Reverse electrodialysis heat engine (REDHE) -- 4.1. Fundamentals of reverse electrodialysis -- 4.1.1. Description of the RED process -- 4.1.2. Ion-exchange membranes for RED -- 4.1.2.1. Electrical resistance -- 4.1.2.2. Membrane permselectivity -- 4.1.2.3. Swelling degree -- 4.1.2.4. Ion-exchange capacity and fixed charge density -- 4.1.3. Fluxes of water and ions through the IEMs -- 4.1.4. Main outputs of the RED process -- 4.2. Fundamentals of RED heat engines -- 4.2.1. Solvent extraction schemes -- 4.2.2. Salt extraction schemes -- 4.2.3. Main outputs of the RED heat engines -- 4.3. Salt selection -- 4.3.1. Salt-solutions for solvent extraction schemes -- 4.3.1.1. Thermodynamic properties of salt solutions -- 4.3.1.2. Theoretical RED results with different salts -- 4.3.1.3. State of the art: RED with alternative salts -- 4.3.2. Salt-solutions for salt extraction schemes -- 4.3.2.1. State of the art: RED with thermolytic salts -- 4.4. RED heat engines -- 4.4.1. State of the art: Solvent extraction schemes -- 4.4.2. State of the art: Salt extraction schemes -- 4.4.3. First prototype of a RED-HE -- 4.4.4. General comparison -- References -- Chapter 5: Solvent extraction regeneration technologies -- 5.1. Introduction -- 5.2. Multieffect distillation for regeneration in an SGP-HE.
|
505 |
8 |
|
|a 5.2.1. Description and fundamentals -- 5.2.2. Assessment of the potential of MED for regeneration in an SGP-HE -- 5.2.2.1. Model of a MED unit for salt solutions regeneration in an SGP-HE -- 5.2.3. Case study -- 5.3. Membrane distillation for regeneration in an SGP-HE -- 5.3.1. Description of the process -- 5.3.2. Assessment of the potential of MD for regeneration in an SGP-HE -- 5.3.3. Case study -- 5.4. Forward osmosis for regeneration in an SGP-HE -- 5.4.1. Description and fundamentals -- 5.4.2. Assessment of FO potential for regeneration in an SGP-HE -- 5.5. Conclusions -- Acknowledgments -- References -- Chapter 6: Salt extraction regeneration technologies -- 6.1. Introduction -- 6.2. Switchable solubility salts -- 6.2.1. Thermal-sensible solubility -- 6.2.2. Phase separation processes -- 6.3. Thermolytic salts -- 6.3.1. Regeneration unit for thermolytic salt solution -- 6.3.1.1. Distillation -- 6.3.1.2. Air stripping process -- 6.3.1.3. Membrane distillation -- 6.3.2. First prototypes -- 6.3.3. Modeling and simulation -- 6.3.4. Regeneration unit performance -- 6.4. Final remarks -- References -- Chapter 7: Coupling salinity gradient heat engines with power generation systems and industrial processes -- 7.1. Introduction -- 7.2. Identification of potential applications of salinity gradients power-heat engines in power plants and industries -- 7.3. Description and modeling of the case studies proposed -- 7.3.1. Case study no. 1: Integration of SGP-HEs in thermoelectric power plant -- 7.3.2. Case study no. 2: Coupling a RED-HE with medium-temperature waste heat to power technologies -- 7.3.3. Case study no. 3: Salinity gradient powers-heat engine in combined heat and power plants -- 7.3.4. Case study no. 4: SGP-HEs for heat upgrade in industrial processes.
|
505 |
8 |
|
|a 7.3.5. Case study no. 5: SGP-HEs for waste-heat exploitation in industrial processes with large water demand -- 7.4. Notes on energy, economic, and environmental indicators used -- 7.4.1. Notes on the legislative framework for combined heat and power plants in European Union -- 7.5. Results -- 7.5.1. Case study no. 1: Reverse electrodialysis-heat engine in thermoelectric power plant -- 7.5.2. Results for case study no. 2: Coupling reverse electrodialysis-heat engine with an organic Rankine cycle plant -- 7.5.3. Results for case study no. 3: Integration of a reverse electrodialysis-heat engine in CHP plants -- 7.5.4. Results for case study no. 4: Coupling a reverse electrodialysis-heat engine with a heat pump for heat upgrade -- 7.5.5. Results for case study no. 5 RED-HEs in industrial processes with large water demand -- 7.6. Perspective analysis with high-efficient reverse electrodialysis-heat engine -- 7.7. Conclusions -- References -- Chapter 8: Special engines -- Nomenclature -- Greek symbols -- Subscripts -- Acronyms -- Part 1: Accumulator mixing heat engine -- 8.1. Accumulator mixing heat engine -- 8.1.1. Introduction and thermodynamic considerations -- 8.1.2. Accumulator mixing technology fundamentals -- 8.1.3. The zinc-silver AccMix cell -- 8.1.3.1. Description -- 8.1.3.2. Experimental realization -- 8.1.3.3. Cell voltage and voltage rise -- 8.1.4. Power generation step: Efficiency of the AccMix cycles -- 8.1.5. Regeneration step: Efficiency of the distillation stage -- 8.1.6. Discussion of the overall efficiency of distillation and SGP heat engine -- 8.1.7. Potentials and limitations -- References -- Part 2: Thermally regenerative ammonia battery (TRAB): Fundamentals and perspectives -- 8.2. Thermally regenerative ammonia battery (TRAB): Fundamentals and perspectives -- 8.2.1. Introduction and description of TRAB concept.
|
505 |
8 |
|
|a 8.2.1.1. Performances evaluation -- 8.2.2. Power production as a function of different operating parameters -- 8.2.2.1. Effect of the concentration of ammonia -- 8.2.2.2. Effect of the concentration of Cu(II) and supporting electrolyte -- 8.2.2.3. Effect of the mixing rate and cell design -- 8.2.2.4. Effect of temperature -- 8.2.2.5. Effect of nature of the membrane -- 8.2.2.6. Effect of electrode shapes -- 8.2.3. Cathodic and Anodic Coulombic efficiencies -- 8.2.4. Regeneration of the solutions and performances in successive cycles -- 8.2.5. Perspectives -- References -- Part 3: Swelling/shrinking hydrogels engines:Fundamentals and perspectives -- 8.3. Swelling/shrinking hydrogels engines: Fundamentals and perspectives -- 8.3.1. What are hydrogels? -- 8.3.2. Salinity gradient energy recovery based on hydrogels -- 8.3.3. Energy recovery from acid-base neutralization based on hydrogels -- 8.3.4. Possible energy recovery from waste heat based on hydrogels -- 8.3.5. Outlook for energy harvest based on hydrogels -- References -- Chapter 9: Resource, environmental, and economic aspects of SGHE -- 9.1. Resource assessment-Heat availability -- 9.1.1. Introduction -- 9.1.2. Waste heat -- 9.1.2.1. Industrial waste heat -- 9.1.2.2. Decentralized power plants -- 9.1.2.3. Marine -- 9.1.2.4. Gas compression stations -- 9.1.3. Geothermal -- 9.1.4. Solar -- 9.1.5. Conclusions -- 9.2. Environmental impacts of SGHE -- 9.2.1. Introduction -- 9.2.2. Background -- 9.2.3. Life cycle assessment methodology -- 9.2.4. Goal and scope -- 9.2.5. Life cycle inventory analysis -- 9.2.6. Life cycle impact assessment -- 9.2.7. Life cycle interpretation -- 9.2.8. LCA examples -- 9.3. Economics of SGHE -- 9.3.1. Introduction -- 9.3.2. Levelized cost of electricity as an indicator of cost-effectiveness -- 9.3.3. System sizing and performance analysis -- 9.3.4. Investment expenditures.
|
650 |
|
0 |
|a Heat-engines.
|
650 |
|
0 |
|a Saline water conversion.
|
650 |
|
6 |
|a Moteurs thermiques.
|0 (CaQQLa)201-0032008
|
650 |
|
6 |
|a Eau sal�ee
|x Dessalement.
|0 (CaQQLa)201-0035114
|
650 |
|
7 |
|a Heat-engines
|2 fast
|0 (OCoLC)fst00954000
|
650 |
|
7 |
|a Saline water conversion
|2 fast
|0 (OCoLC)fst01103947
|
776 |
0 |
8 |
|i Print version:
|t Salinity gradient heat engines.
|d Duxford : Woodhead Publishing, [2022]
|z 0081028474
|z 9780081028476
|w (OCoLC)1130248467
|
776 |
0 |
8 |
|i Print version:
|t Salinity gradient heat engines
|z 9780081028476
|w (OCoLC)1272891514
|
830 |
|
0 |
|a Woodhead Publishing in energy.
|
856 |
4 |
0 |
|u https://sciencedirect.uam.elogim.com/science/book/9780081028476
|z Texto completo
|