|
|
|
|
LEADER |
00000cam a2200000 a 4500 |
001 |
SCIDIR_on1282599013 |
003 |
OCoLC |
005 |
20231120010614.0 |
006 |
m o d |
007 |
cr |n||||||||| |
008 |
211104s2022 mau o 001 0 eng d |
040 |
|
|
|a YDX
|b eng
|e pn
|c YDX
|d OPELS
|d GZM
|d OCLCF
|d OCLCO
|d OCLCQ
|d OCLCO
|d K6U
|d SFB
|d N$T
|d OCLCQ
|d OCLCO
|
019 |
|
|
|a 1282000601
|a 1283139974
|
020 |
|
|
|a 9780323859561
|q (electronic bk.)
|
020 |
|
|
|a 0323859569
|q (electronic bk.)
|
020 |
|
|
|z 9780128244951
|
020 |
|
|
|z 012824495X
|
035 |
|
|
|a (OCoLC)1282599013
|z (OCoLC)1282000601
|z (OCoLC)1283139974
|
050 |
|
4 |
|a TN880
|
082 |
0 |
4 |
|a 622.3385
|2 23
|
245 |
0 |
0 |
|a Sustainable natural gas reservoir and production engineering /
|c edited by David A. Wood and Jianchao Cai.
|
264 |
|
1 |
|a Cambridge, MA :
|b Gulf Professional Publishing,
|c [2022]
|
300 |
|
|
|a 1 online resource
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a The fundamentals and sustainable advances in natural gas science and engineering series ;
|v v. 1
|
500 |
|
|
|a Includes index.
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a Intro -- Sustainable Natural Gas Reservoir and Production Engineering -- Copyright -- Contents -- Contributors -- Preface -- About the fundamentals and sustainable advances in natural gas science and engineering series -- About volume 1: sustainable natural gas reservoir and production engineering -- Chapter One: Gas properties, fundamental equations of state and phase relationships -- 1. Introduction to natural gas -- 1.1. Composition of natural gas -- 1.2. Classification of natural gas -- 1.3. Measurement standards -- 2. Gas equation of state -- 2.1. Equation of state -- 2.2. Calculation of compressibility factor -- 3. Physical and thermodynamic properties of natural gas -- 3.1. Relative molecular mass -- 3.2. Density of natural gas -- 3.3. Critical parameters and reduced parameters -- 3.4. Enthalpy of natural gas -- 3.5. Entropy of natural gas -- 3.6. Specific heat capacity of natural gas -- 3.7. Joule-Thompson coefficient -- 3.8. Calorific value of natural gas -- 3.9. Explosion limit of natural gas -- 3.10. Viscosity of natural gas -- 3.11. Thermal conductivity coefficient of natural gas -- 4. Phase relationships of natural gas -- 4.1. Dew point and bubble point of natural gas -- 4.2. Vaporization rate of natural gas -- 5. Summary -- References -- Chapter Two: Natural gas demand prediction: Methods, time horizons, geographical scopes, sustainability issues, and scenarios -- 1. Introduction -- 2. Fundamentals of natural gas demand prediction requirements -- 3. Advanced aspects of natural gas demand prediction methodologies -- 3.1. Identifying relevant published research on gas prediction -- 3.2. Analysis of gas prediction methodologies applied based on the relevant published research identified -- 3.2.1. Questions addressed in the analysis -- 3.2.2. Insight gained from analysis of published gas prediction studies.
|
505 |
8 |
|
|a 3.2.3. Prediction time horizons and geographical scopes -- 3.2.4. Sustainable development features considered in published studies -- 4. Case study: A learning scenario development model providing sustainable global natural gas demand predictions -- 5. Summary -- A. Appendix -- References -- Chapter Three: Machine learning to improve natural gas reservoir simulations -- 1. Introduction -- 2. Fundamental concepts and key principles -- 2.1. Reservoir simulation -- 2.2. Governing equations of gas reservoir simulations -- 3. Advanced research/field applications -- 3.1. Application of ML in data preprocessing and prediction of properties -- 3.2. Application of ML in governing equations and numerical solutions -- 3.3. Application of ML in history matching -- 3.4. Application of ML in proxy modeling and optimization -- 4. Case study: Dew point prediction for gas condensate reservoirs -- 4.1. Dew point pressure -- 4.2. Data analysis -- 4.3. ANN-TLBO model design -- 4.4. CNN model design -- 4.5. Overfitting and appropriate remedies -- 4.6. Evaluation and discussion -- 5. Summary -- Chapter Three. References -- References -- Chapter Three. References -- References -- Chapter Four: In situ stress and mechanical properties of unconventional gas reservoirs -- 1. Introduction -- 2. Fundamental concepts and key principles -- 2.1. In situ stress -- 2.2. Mechanical properties of unconventional reservoirs -- 2.2.1. Calculation of static mechanical parameters -- 2.2.2. Dynamic mechanical parameters calculation -- 3. Advanced research/field applications -- 3.1. Brittleness evaluation index application -- 3.2. Field applications -- 4. Case study -- 4.1. Geological background -- 4.2. Samples and data processing -- 4.3. Reservoir characteristics -- 4.4. Geomechanical parameters -- 4.4.1. Static mechanical test results -- 4.4.2. Conversion of dynamic and static parameters.
|
505 |
8 |
|
|a 4.5. Brittleness analysis of shale -- 4.6. In-situ stress magnitude -- 5. Summary and conclusions -- Declarations -- Chapter Four. References -- References -- Chapter Five: Hydraulic fracturing of unconventional reservoirs aided by simulation technologies -- 1. Introduction -- 2. Mathematical models for hydraulic fracturing -- 2.1. Governing equations -- 2.1.1. Deformation of the rock matrix and the fractures -- 2.1.2. Fracture propagation -- 2.1.3. Fluid flow in fractures and pores -- 2.1.4. Thermal transport -- 2.2. Analytical and semi-analytical solutions for the propagation of a single hydraulic fracture -- 3. Numerical methods for simulation of hydraulic fracturing -- 4. Case study: Simulation of hydraulic fracture propagation in a shale formation -- 4.1. Model generation -- 4.2. Effects of 3D stress on induced fracture propagation -- 4.3. Effects of natural fracture orientations on induced fracture propagation -- 4.4. Effects of natural fracture state on induced fracture propagation -- 4.5. Effects of drilling direction on induced fracture propagation -- 5. Summary and conclusions -- Chapter Five. References -- References -- Chapter Six: Experimental methods in fracturing mechanics focused on minimizing their environmental footprint -- 1. Introduction -- 2. Experimental methods in fracturing mechanics -- 2.1. Micromechanical tests of rock -- 2.1.1. Grid nanoindentation tests -- 2.1.2. Atomic force microscope for micromechanical properties mapping -- SEM and EDS -- Atomic force microscopy (AFM) -- High resolution characterization of individual mineral aggregates -- 2.2. Triaxial tests for rocks with SC-CO2 -- 2.3. Triaxial direct shear test for rocks and shear induced permeability evolution -- 2.3.1. Experimental setup -- 2.3.2. Experimental scheme and procedure -- 2.4. Mechanical test of rock sample treated by liquid nitrogen.
|
505 |
8 |
|
|a 2.4.1. Macro-scale mechanical tests under LN2 freezing condition -- 2.4.2. Cryo-scanning electron microscopy test -- 3. Experimental methods for waterless fracturing -- 3.1. Triaxial fracturing system -- 3.1.1. True triaxial-loading and heating vessel -- 3.1.2. Pumping system for supercritical CO2 -- 3.1.3. Pumping system for liquid nitrogen -- 3.2. Triaxial fracturing for supercritical CO2 -- 3.2.1. Rock specimen preparation -- 3.2.2. Experimental procedures -- 3.2.3. Experimental results -- 3.3. Triaxial fracturing for liquid nitrogen -- 3.3.1. Experimental procedures -- 3.3.2. Fracturing experiment results -- 3.4. High-speed imaging of multiple fract propagation using homogenous transparent solids -- 3.4.1. Transparent material selection -- 3.4.2. Modified triaxial vessel and transparent solids for high-speed imaging -- 3.4.3. Scaling laws and parameter design -- 3.4.4. Experiment procedures -- 4. Fracture monitoring and analysis methods -- 4.1. Manual optical observation method -- 4.2. Acoustic emission monitoring method -- 4.3. 2D slice image analysis -- 4.4. 3D profilometry technique -- 4.5. 3D CT image reconstruction -- 4.6. CT images for characterization of fracture parameters -- 4.7. Other fracture evaluating approach -- Chapter Six. References -- References -- Chapter Seven: Production decline curve analysis and reserves forecasting for conventional and unconventional gas reservoirs -- 1. Introduction -- 2. Fundamental concepts and key principles -- 2.1. Historical decline curve fitting methods -- 2.2. Arps model -- 2.3. Rate-cumulative relationships to establish reserves and EUR -- 2.4. Constraints and assumption applied with Arps models -- 3. Advanced research/field applications -- 3.1. Segmented decline curves suited to unconventional reservoirs -- 3.2. Power law exponential decline (PLE) -- 3.3. Stretched exponential decline (SEPD).
|
505 |
8 |
|
|a 3.4. Duong's method -- 3.5. Logistic growth analysis (LGA) -- 3.6. Fetkovich type curve -- 3.7. Wattenbarger type curve -- 3.8. Blasingame type curve -- 3.9. Agarwal-Gardner type curve -- 3.10. Normalized pressure integral (NPI) -- 4. Case studies -- 4.1. Tip-top field conventional gas/vertical well case -- 4.2. Unconventional gas/horizontal well -- 5. Summary -- References -- Chapter Eight: Well test analysis for characterizing unconventional gas reservoirs -- 1. Introduction -- 2. Reservoir flow regimes -- 3. Pressure transient analysis (PTA) -- 3.1. Well test analysis for radial flow regime -- 3.2. Well test analysis for linear and elliptical flow regimes -- 3.3. Field example: Well test analysis for a multifractured shale gas reservoir -- 4. Rate transient analysis (RTA) -- 4.1. RTA field example: Multifractured shale gas reservoir -- 5. Uncertainties of SRV characterization using analytical methods -- 6. Characterizing SRV according to dual-permeability model -- 7. Effect of multiphase flow on PTA in unconventional Wells -- 8. A typical example in multiphase producing well test -- 9. Temperature transient analysis -- 10. Conclusions -- References -- Chapter Nine: Carbon-nanotube-polymer nanocomposites enable wellbore cements to better inhibit gas migration and enhance ... -- 1. Fundamental concepts -- 1.1. The key role of cement in achieving well integrity -- 1.2. Application of polymer additives in wellbore cement -- 1.3. Application of nanoparticles as wellbore cement additives -- 1.4. Wellbore cement reinforcement by CNT-polymer nanocomposite additive -- 2. Advanced consideration in controlling wellbore gas migration -- 2.1. Potential gas migration occurrences in wellbores -- 2.2. Major mechanisms in the emergence of gas migration in cement -- 2.2.1. Cement gelatinization in transient time.
|
650 |
|
0 |
|a Gas reservoirs.
|
650 |
|
0 |
|a Production engineering.
|
650 |
|
6 |
|a R�eservoirs de gaz naturel (G�eologie)
|0 (CaQQLa)201-0144400
|
650 |
|
6 |
|a Technique de la production.
|0 (CaQQLa)201-0030177
|
650 |
|
7 |
|a Gas reservoirs
|2 fast
|0 (OCoLC)fst00938426
|
650 |
|
7 |
|a Production engineering
|2 fast
|0 (OCoLC)fst01078282
|
700 |
1 |
|
|a Wood, David A.
|c (Petroleum engineer),
|e editor.
|
700 |
1 |
|
|a Cai, Jianchao,
|e editor.
|
776 |
0 |
8 |
|i Print version:
|t Sustainable natural gas reservoir and production engineering.
|d Cambridge, MA : Gulf Professional Publishing, [2022]
|z 012824495X
|z 9780128244951
|w (OCoLC)1256250414
|
776 |
0 |
8 |
|i Print version:
|t SUSTAINABLE NATURAL GAS RESERVOIR AND PRODUCTION ENGINEERING.
|d [S.l.] : GULF PROFESSIONAL, 2021
|z 012824495X
|w (OCoLC)1256250414
|
830 |
|
0 |
|a Fundamentals and sustainable advances in natural gas science and engineering series ;
|v v. 1.
|
856 |
4 |
0 |
|u https://sciencedirect.uam.elogim.com/science/book/9780128244951
|z Texto completo
|