Cargando…

Sustainable natural gas reservoir and production engineering /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Wood, David A. (Petroleum engineer) (Editor ), Cai, Jianchao (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge, MA : Gulf Professional Publishing, [2022]
Colección:Fundamentals and sustainable advances in natural gas science and engineering series ; v. 1.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 SCIDIR_on1282599013
003 OCoLC
005 20231120010614.0
006 m o d
007 cr |n|||||||||
008 211104s2022 mau o 001 0 eng d
040 |a YDX  |b eng  |e pn  |c YDX  |d OPELS  |d GZM  |d OCLCF  |d OCLCO  |d OCLCQ  |d OCLCO  |d K6U  |d SFB  |d N$T  |d OCLCQ  |d OCLCO 
019 |a 1282000601  |a 1283139974 
020 |a 9780323859561  |q (electronic bk.) 
020 |a 0323859569  |q (electronic bk.) 
020 |z 9780128244951 
020 |z 012824495X 
035 |a (OCoLC)1282599013  |z (OCoLC)1282000601  |z (OCoLC)1283139974 
050 4 |a TN880 
082 0 4 |a 622.3385  |2 23 
245 0 0 |a Sustainable natural gas reservoir and production engineering /  |c edited by David A. Wood and Jianchao Cai. 
264 1 |a Cambridge, MA :  |b Gulf Professional Publishing,  |c [2022] 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a The fundamentals and sustainable advances in natural gas science and engineering series ;  |v v. 1 
500 |a Includes index. 
588 0 |a Print version record. 
505 0 |a Intro -- Sustainable Natural Gas Reservoir and Production Engineering -- Copyright -- Contents -- Contributors -- Preface -- About the fundamentals and sustainable advances in natural gas science and engineering series -- About volume 1: sustainable natural gas reservoir and production engineering -- Chapter One: Gas properties, fundamental equations of state and phase relationships -- 1. Introduction to natural gas -- 1.1. Composition of natural gas -- 1.2. Classification of natural gas -- 1.3. Measurement standards -- 2. Gas equation of state -- 2.1. Equation of state -- 2.2. Calculation of compressibility factor -- 3. Physical and thermodynamic properties of natural gas -- 3.1. Relative molecular mass -- 3.2. Density of natural gas -- 3.3. Critical parameters and reduced parameters -- 3.4. Enthalpy of natural gas -- 3.5. Entropy of natural gas -- 3.6. Specific heat capacity of natural gas -- 3.7. Joule-Thompson coefficient -- 3.8. Calorific value of natural gas -- 3.9. Explosion limit of natural gas -- 3.10. Viscosity of natural gas -- 3.11. Thermal conductivity coefficient of natural gas -- 4. Phase relationships of natural gas -- 4.1. Dew point and bubble point of natural gas -- 4.2. Vaporization rate of natural gas -- 5. Summary -- References -- Chapter Two: Natural gas demand prediction: Methods, time horizons, geographical scopes, sustainability issues, and scenarios -- 1. Introduction -- 2. Fundamentals of natural gas demand prediction requirements -- 3. Advanced aspects of natural gas demand prediction methodologies -- 3.1. Identifying relevant published research on gas prediction -- 3.2. Analysis of gas prediction methodologies applied based on the relevant published research identified -- 3.2.1. Questions addressed in the analysis -- 3.2.2. Insight gained from analysis of published gas prediction studies. 
505 8 |a 3.2.3. Prediction time horizons and geographical scopes -- 3.2.4. Sustainable development features considered in published studies -- 4. Case study: A learning scenario development model providing sustainable global natural gas demand predictions -- 5. Summary -- A. Appendix -- References -- Chapter Three: Machine learning to improve natural gas reservoir simulations -- 1. Introduction -- 2. Fundamental concepts and key principles -- 2.1. Reservoir simulation -- 2.2. Governing equations of gas reservoir simulations -- 3. Advanced research/field applications -- 3.1. Application of ML in data preprocessing and prediction of properties -- 3.2. Application of ML in governing equations and numerical solutions -- 3.3. Application of ML in history matching -- 3.4. Application of ML in proxy modeling and optimization -- 4. Case study: Dew point prediction for gas condensate reservoirs -- 4.1. Dew point pressure -- 4.2. Data analysis -- 4.3. ANN-TLBO model design -- 4.4. CNN model design -- 4.5. Overfitting and appropriate remedies -- 4.6. Evaluation and discussion -- 5. Summary -- Chapter Three. References -- References -- Chapter Three. References -- References -- Chapter Four: In situ stress and mechanical properties of unconventional gas reservoirs -- 1. Introduction -- 2. Fundamental concepts and key principles -- 2.1. In situ stress -- 2.2. Mechanical properties of unconventional reservoirs -- 2.2.1. Calculation of static mechanical parameters -- 2.2.2. Dynamic mechanical parameters calculation -- 3. Advanced research/field applications -- 3.1. Brittleness evaluation index application -- 3.2. Field applications -- 4. Case study -- 4.1. Geological background -- 4.2. Samples and data processing -- 4.3. Reservoir characteristics -- 4.4. Geomechanical parameters -- 4.4.1. Static mechanical test results -- 4.4.2. Conversion of dynamic and static parameters. 
505 8 |a 4.5. Brittleness analysis of shale -- 4.6. In-situ stress magnitude -- 5. Summary and conclusions -- Declarations -- Chapter Four. References -- References -- Chapter Five: Hydraulic fracturing of unconventional reservoirs aided by simulation technologies -- 1. Introduction -- 2. Mathematical models for hydraulic fracturing -- 2.1. Governing equations -- 2.1.1. Deformation of the rock matrix and the fractures -- 2.1.2. Fracture propagation -- 2.1.3. Fluid flow in fractures and pores -- 2.1.4. Thermal transport -- 2.2. Analytical and semi-analytical solutions for the propagation of a single hydraulic fracture -- 3. Numerical methods for simulation of hydraulic fracturing -- 4. Case study: Simulation of hydraulic fracture propagation in a shale formation -- 4.1. Model generation -- 4.2. Effects of 3D stress on induced fracture propagation -- 4.3. Effects of natural fracture orientations on induced fracture propagation -- 4.4. Effects of natural fracture state on induced fracture propagation -- 4.5. Effects of drilling direction on induced fracture propagation -- 5. Summary and conclusions -- Chapter Five. References -- References -- Chapter Six: Experimental methods in fracturing mechanics focused on minimizing their environmental footprint -- 1. Introduction -- 2. Experimental methods in fracturing mechanics -- 2.1. Micromechanical tests of rock -- 2.1.1. Grid nanoindentation tests -- 2.1.2. Atomic force microscope for micromechanical properties mapping -- SEM and EDS -- Atomic force microscopy (AFM) -- High resolution characterization of individual mineral aggregates -- 2.2. Triaxial tests for rocks with SC-CO2 -- 2.3. Triaxial direct shear test for rocks and shear induced permeability evolution -- 2.3.1. Experimental setup -- 2.3.2. Experimental scheme and procedure -- 2.4. Mechanical test of rock sample treated by liquid nitrogen. 
505 8 |a 2.4.1. Macro-scale mechanical tests under LN2 freezing condition -- 2.4.2. Cryo-scanning electron microscopy test -- 3. Experimental methods for waterless fracturing -- 3.1. Triaxial fracturing system -- 3.1.1. True triaxial-loading and heating vessel -- 3.1.2. Pumping system for supercritical CO2 -- 3.1.3. Pumping system for liquid nitrogen -- 3.2. Triaxial fracturing for supercritical CO2 -- 3.2.1. Rock specimen preparation -- 3.2.2. Experimental procedures -- 3.2.3. Experimental results -- 3.3. Triaxial fracturing for liquid nitrogen -- 3.3.1. Experimental procedures -- 3.3.2. Fracturing experiment results -- 3.4. High-speed imaging of multiple fract propagation using homogenous transparent solids -- 3.4.1. Transparent material selection -- 3.4.2. Modified triaxial vessel and transparent solids for high-speed imaging -- 3.4.3. Scaling laws and parameter design -- 3.4.4. Experiment procedures -- 4. Fracture monitoring and analysis methods -- 4.1. Manual optical observation method -- 4.2. Acoustic emission monitoring method -- 4.3. 2D slice image analysis -- 4.4. 3D profilometry technique -- 4.5. 3D CT image reconstruction -- 4.6. CT images for characterization of fracture parameters -- 4.7. Other fracture evaluating approach -- Chapter Six. References -- References -- Chapter Seven: Production decline curve analysis and reserves forecasting for conventional and unconventional gas reservoirs -- 1. Introduction -- 2. Fundamental concepts and key principles -- 2.1. Historical decline curve fitting methods -- 2.2. Arps model -- 2.3. Rate-cumulative relationships to establish reserves and EUR -- 2.4. Constraints and assumption applied with Arps models -- 3. Advanced research/field applications -- 3.1. Segmented decline curves suited to unconventional reservoirs -- 3.2. Power law exponential decline (PLE) -- 3.3. Stretched exponential decline (SEPD). 
505 8 |a 3.4. Duong's method -- 3.5. Logistic growth analysis (LGA) -- 3.6. Fetkovich type curve -- 3.7. Wattenbarger type curve -- 3.8. Blasingame type curve -- 3.9. Agarwal-Gardner type curve -- 3.10. Normalized pressure integral (NPI) -- 4. Case studies -- 4.1. Tip-top field conventional gas/vertical well case -- 4.2. Unconventional gas/horizontal well -- 5. Summary -- References -- Chapter Eight: Well test analysis for characterizing unconventional gas reservoirs -- 1. Introduction -- 2. Reservoir flow regimes -- 3. Pressure transient analysis (PTA) -- 3.1. Well test analysis for radial flow regime -- 3.2. Well test analysis for linear and elliptical flow regimes -- 3.3. Field example: Well test analysis for a multifractured shale gas reservoir -- 4. Rate transient analysis (RTA) -- 4.1. RTA field example: Multifractured shale gas reservoir -- 5. Uncertainties of SRV characterization using analytical methods -- 6. Characterizing SRV according to dual-permeability model -- 7. Effect of multiphase flow on PTA in unconventional Wells -- 8. A typical example in multiphase producing well test -- 9. Temperature transient analysis -- 10. Conclusions -- References -- Chapter Nine: Carbon-nanotube-polymer nanocomposites enable wellbore cements to better inhibit gas migration and enhance ... -- 1. Fundamental concepts -- 1.1. The key role of cement in achieving well integrity -- 1.2. Application of polymer additives in wellbore cement -- 1.3. Application of nanoparticles as wellbore cement additives -- 1.4. Wellbore cement reinforcement by CNT-polymer nanocomposite additive -- 2. Advanced consideration in controlling wellbore gas migration -- 2.1. Potential gas migration occurrences in wellbores -- 2.2. Major mechanisms in the emergence of gas migration in cement -- 2.2.1. Cement gelatinization in transient time. 
650 0 |a Gas reservoirs. 
650 0 |a Production engineering. 
650 6 |a R�eservoirs de gaz naturel (G�eologie)  |0 (CaQQLa)201-0144400 
650 6 |a Technique de la production.  |0 (CaQQLa)201-0030177 
650 7 |a Gas reservoirs  |2 fast  |0 (OCoLC)fst00938426 
650 7 |a Production engineering  |2 fast  |0 (OCoLC)fst01078282 
700 1 |a Wood, David A.  |c (Petroleum engineer),  |e editor. 
700 1 |a Cai, Jianchao,  |e editor. 
776 0 8 |i Print version:  |t Sustainable natural gas reservoir and production engineering.  |d Cambridge, MA : Gulf Professional Publishing, [2022]  |z 012824495X  |z 9780128244951  |w (OCoLC)1256250414 
776 0 8 |i Print version:  |t SUSTAINABLE NATURAL GAS RESERVOIR AND PRODUCTION ENGINEERING.  |d [S.l.] : GULF PROFESSIONAL, 2021  |z 012824495X  |w (OCoLC)1256250414 
830 0 |a Fundamentals and sustainable advances in natural gas science and engineering series ;  |v v. 1. 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780128244951  |z Texto completo