Cargando…

Landslide hazards, risks and disasters /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Davies, Timothy R. H. (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam : Elsevier, 2021.
Edición:Second edition.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 SCIDIR_on1281903898
003 OCoLC
005 20231120010613.0
006 m o d
007 cr |n|||||||||
008 211102s2021 ne a ob 001 0 eng d
040 |a UIU  |b eng  |e rda  |e pn  |c UIU  |d EBLCP  |d OPELS  |d UKMGB  |d YDXIT  |d OCLCQ  |d SFB  |d OCLCO  |d K6U  |d OCLCQ 
015 |a GBC1D7320  |2 bnb 
016 7 |a 020300040  |2 Uk 
020 |a 9780128226452  |q (ePub ebook) 
020 |a 0128226455  |q (ePub ebook) 
020 |z 9780128184646  |q (pbk.) 
020 |z 0128184647  |q (pbk.) 
035 |a (OCoLC)1281903898 
050 4 |a QE599.A2  |b L363 2021 
082 0 4 |a 363.349  |2 23 
245 0 0 |a Landslide hazards, risks and disasters /  |c edited by Tim Davies. 
250 |a Second edition. 
264 1 |a Amsterdam :  |b Elsevier,  |c 2021. 
300 |a 1 online resource :  |b illustrations (colour) 
336 |a text  |b txt  |2 rdacontent 
336 |a still image  |b sti  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references and index. 
588 0 |a Print version record. 
505 0 |a Front Cover -- Landslide Hazards, Risks, and Disasters -- Landslide Hazards, Risks, and Disasters -- Copyright -- Contents -- Contributors -- Editorial foreword to the second edition -- References -- 1 -- Landslide hazards, risks and disasters: introduction -- 1.1 Introduction -- 1.2 Understanding landslide hazards -- 1.3 Understanding landslide risks -- 1.4 Understanding future landslide disasters -- 1.5 Conclusion -- References -- 2 -- Landslide causes and triggers -- 2.1 Introduction -- 2.2 Concept of instability -- 2.3 Stability factors -- 2.3.1 Material strength and topography -- 2.3.2 Strength degradation -- 2.3.2.1 Stress-induced fatigue -- 2.3.2.2 Chemical weathering -- 2.3.2.3 Cold environment processes -- 2.3.2.4 Discussion -- 2.3.3 Groundwater changes -- 2.3.4 Ground shaking -- 2.4 Summary and conclusion -- References -- 3 -- Landslides in bedrock -- 3.1 Introduction -- 3.2 Rock materials -- 3.2.1 Structural control in strong rock -- 3.2.2 Intact rock strength -- 3.2.3 Rock mass strength -- 3.3 Mass movement characteristics -- 3.3.1 Volume and velocity -- 3.3.2 Landslide displacement activity -- 3.3.3 Progressive failure -- 3.3.4 Runout -- 3.4 Mass movement types -- 3.4.1 Rockfalls -- 3.4.2 Rockslides -- 3.4.3 Rock spreads -- 3.4.4 Rock avalanches -- 3.4.5 Sackungen/deep-seated gravitational slope deformation -- 3.4.6 Complex bedrock mass movements -- 3.4.7 Secondary hazards associated with bedrock landslides -- 3.5 Case studies -- 3.5.1 Seymareh, Iran -- 3.5.2 Mount Meager, Canada -- 3.5.3 La Clap�ire, France -- 3.5.4 Threatening Rock, United States of America -- 3.6 Bedrock landslide recognition and management -- 3.6.1 Anticipation -- 3.6.2 Avoidance -- 3.6.3 Prevention -- 3.7 Risk management of rock slopes -- 3.8 Summary -- References -- 4 -- Coseismic landslides -- 4.1 Seismically triggered landslides -- 4.1.1 Introduction. 
505 8 |a 4.1.2 A note on terminology -- 4.1.3 Landslides caused by earthquakes -- 4.1.4 Geological materials and EILs -- 4.2 Mechanics of earthquake-induced landslides -- 4.2.1 Earthquake energy, magnitude and attenuation -- 4.2.2 Topographic amplification and landslides -- 4.2.3 Shaking and porewater pressures -- 4.2.4 Summary -- 4.3 Stability analysis and hazard assessment -- 4.3.1 Pseudostatic and limit state models -- 4.3.2 The Newmark Sliding block model -- 4.3.3 Coupled analyses -- 4.3.4 Statistical models, hazard mapping and GIS -- 4.4 Limitations of current understanding -- 4.4.1 Seismological unknowns -- 4.4.2 Geotechnical considerations -- 4.4.3 Concluding comments -- References -- Further reading -- 5 -- Volcanic debris avalanches -- 5.1 Introduction -- 5.2 Volcanic debris avalanches -- 5.3 Types of volcanic landslides -- 5.3.1 Large-scale volcano and substrata landslides -- 5.4 Deep-seated volcanic landslide deformation: priming and triggers -- 5.5 Deep-seated volcano gravitational deformation -- 5.6 Regional tectonic influences -- 5.7 Priming of volcanic landslides -- 5.8 Triggering volcanic landslides -- 5.9 The structure of volcanic landslides -- 5.10 Volcanic landslide deposits -- 5.10.1 Scar -- 5.10.2 Toreva blocks -- 5.10.3 Hummocks -- 5.10.4 Inter-hummock areas -- 5.10.5 Ridges -- 5.10.6 Marginal zones -- 5.10.7 Deposit facies -- 5.10.8 Block facies -- 5.10.9 Matrix facies -- 5.10.10 Mixed facies -- 5.10.11 Basal facies -- 5.11 Debris avalanche textures and structures -- 5.12 Secondary hazards of volcanic landslides -- 5.13 Volcanic landslide transport mechanisms -- 5.14 Hazards from volcanic landslides -- 5.15 Summary -- References -- 6 -- Peat landslides -- 6.1 Introduction and background -- 6.2 The nature of peat, its structure and material properties -- 6.2.1 Peat properties -- 6.2.2 Peat deposits and peat depths. 
505 8 |a 6.2.3 'Peat' or 'bog' mass movements? -- 6.3 Morphology and classification of peat landslides -- 6.3.1 A confused terminology -- 6.3.2 A formal classification of peat landslides (Dykes and Warburton, 2007) -- 6.4 Relationship between landslide type and peat stratigraphy -- 6.5 Impacts of peat landslides -- 6.5.1 Example: Cashlaundrumlahan peat flow, Derrybrien, Ireland (October 2003) -- 6.5.2 Example: failure during road construction, North Pennines, UK (August 2006) -- 6.6 The runout of peat landslides -- 6.7 Slope stability analysis of peat landslides and geotechnical properties -- 6.8 Historical perspective on the frequency of peat landslides -- 6.9 The future incidence of peat landslides -- 6.10 Conclusion -- References -- 7 -- Rock-snow-ice avalanches -- 7.1 Introduction -- 7.2 Rapid mass movements on glaciers -- 7.2.1 Frequency and distribution -- 7.2.2 Causes -- 7.2.3 Evolution -- 7.3 RSI avalanche propagation -- 7.3.1 Topographic effects -- 7.3.2 Motion on low-friction glaciers -- 7.3.3 Snow and ice content of the granular mass -- 7.3.4 Melting of ice and snow due to frictional heating -- 7.3.5 Snow and ice entrainment -- 7.4 Implications for hazard assessment -- 7.4.1 Probability of occurrence in time -- 7.4.2 Zone of possible initiation -- 7.4.3 Runout prediction -- 7.5 Conclusions -- References -- 8 -- Multiple landslide-damming episodes -- 8.1 Introduction -- 8.2 Previous work on landslide dams -- 8.3 Landslide-dam episodes: lessons from case studies -- 8.3.1 Wenchuan earthquake (Mw 7.9), China, 2008 -- 8.3.2 Murchison (Buller) earthquake (Mw 7.8), New Zealand, 1929 -- 8.3.3 Typhoon Talas, Japan, 2011 -- 8.4 Discussion -- 8.5 Conclusions -- Acknowledgements -- References -- 9 -- Rock avalanches onto glaciers -- 9.1 Introduction -- 9.2 Processes -- 9.2.1 Detachment zone and conditions -- 9.2.1.1 Preparatory factors. 
505 8 |a 9.2.1.2 Triggering factors -- 9.2.1.3 Glacier basins and rock avalanches -- 9.2.2 Supraglacial motion -- 9.2.2.1 Flowing processes -- 9.2.2.2 Higher mobility of rock avalanches on glaciers -- 9.2.3 Rock avalanche deposits and sedimentary properties -- 9.2.3.1 Deposition onto glacier surface -- 9.2.3.1.1 Thickness of rock avalanche deposits onto glaciers -- 9.2.3.1.2 Morphology, sedimentology and macrofabric of rock avalanche carapace -- 9.2.3.1.3 Matrix particle-size distribution -- 9.2.3.2 Post-depositional modifications of rock avalanche deposits on glacier -- 9.2.3.2.1 Reworking of rock avalanche debris -- 9.2.3.2.2 Modification of the pattern of supraglacial deposits -- 9.2.3.3 Deposition of rock avalanches outside the glacier -- 9.3 Consequences -- 9.3.1 Rock avalanche contribution to supraglacial debris covers -- 9.3.2 Glacier dynamics in relation to rock avalanche deposits -- 9.3.2.1 Glacier advance and velocity change due to rock avalanches -- 9.3.2.2 Reduced ablation due to rock avalanche deposits -- 9.3.2.3 Effect of load increase and sub-glacial drainage change -- 9.3.3 Atypical moraine complexes and implications for paleo-glacial sequences/reconstruction -- 9.3.4 Post-landslide developments and hazards -- 9.4 Case studies -- 9.4.1 Recent rock avalanches onto glacier in Aoraki/Mount Cook area, New Zealand -- 9.4.2 The 1991 Chillinji Glacier rock avalanche (western Karakoram) -- 9.4.3 Holocene Horcones mass flow, Cerro Aconcagua (6961m asl), Argentina -- 9.5 Concluding remarks -- References -- 10 -- Paleo-landslides -- 10.1 Introduction -- 10.2 Significance of paleo-landslides -- 10.3 Recognition and mapping -- 10.3.1 Role of geomorphology -- 10.3.2 Role of stratigraphy and sedimentology -- 10.4 Dating paleo-landslides -- 10.4.1 Dendrochronology -- 10.4.2 Radiocarbon dating -- 10.4.3 Terrestrial cosmogenic nuclide dating. 
505 8 |a 10.5 Temporal bias -- 10.6 Role in landscape evolution -- 10.7 Risk assessment -- 10.7.1 Oso -- 10.7.2 Cheekye Fan -- 10.8 Conclusion -- References -- 11 -- Remote sensing of landslide motion with emphasis on satellite multi-temporal interferometry applications: an o ... -- 11.1 Introduction -- 11.2 Brief introduction to DInSAR and Multi-Temporal Interferometry -- 11.2.1 DInSAR and MTI -- 11.2.2 Technical and practical aspects of MTI applied to landslide motion detection and monitoring -- 11.2.2.1 Stable reference point selection -- 11.2.2.2 Surface displacement/deformation model -- 11.2.2.3 Phase aliasing problem and maximum detectable motion velocity -- 11.2.2.4 3D surface displacement versus LOS measurement from MTI -- 11.2.2.5 Precision and quality assessment of MTI measurements -- 11.2.2.6 MTI processing and post-processing issues -- 11.3 Examples of different scale MTI applications to landslide motion detection and monitoring -- 11.3.1 Reliability of MTI results -- 11.3.2 Examples of MTI application from the Italian Alps: issues of radar visibility and sensitivity to down-slope movements -- 11.3.2.1 Issues of radar visibility and sensitivity to down-slope movements -- 11.3.2.2 MTI application example from the Italian Alps -- 11.3.3 Examples of MTI application from the Apennine Mountains: instability of hilltop towns -- 11.3.3.1 Characteristics of the study area and previous MTI investigations -- 11.3.3.2 Instability of hilltop towns in the Daunia Apennines -- 11.3.3.2.1 The hilltop town of Bovino -- 11.3.3.2.2 The hilltop town of Volturino -- 11.3.3.2.3 The hillside town of Pietramontecorvino -- 11.3.3.3 Utility of MTI for monitoring slope/ground instability hazards in urban/peri-urban areas -- 11.3.4 Example of MTI application from the mountains of Haiti -- 11.3.5 Example of GBInSAR application from the Southern Apennines, Italy. 
650 0 |a Landslides. 
650 0 |a Landslides  |x Prevention. 
650 0 |a Landslides  |x Risk assessment. 
650 0 |a Landslide hazard analysis. 
650 7 |a Landslide hazard analysis.  |2 fast  |0 (OCoLC)fst00992078 
650 7 |a Landslides.  |2 fast  |0 (OCoLC)fst00992079 
650 7 |a Landslides  |x Prevention.  |2 fast  |0 (OCoLC)fst00992091 
700 1 |a Davies, Timothy R. H.,  |e editor. 
776 0 8 |i Print version:  |t Landslide hazards, risks and disasters.  |b Second edition  |z 9780128184646  |w (OCoLC)1264400420 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780128184646  |z Texto completo