Cargando…

Biomedical innovations to combat COVID-19 /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Rosales-Mendoza, Sergio, Comas-Garcia, Mauricio, Gonzalez-Ortega, Omar
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London : Academic Press, [2022]
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Front Cover
  • Biomedical Innovations to Combat COVID-19
  • Copyright Page
  • Contents
  • List of contributors
  • Preface
  • Acknowledgments
  • 1 Basic virological aspects of SARS-CoV-2
  • 1.1 Introduction
  • 1.2 Genome organization and function
  • 1.2.1 Genome organization
  • 1.2.2 Genome function
  • 1.3 Viral entry
  • 1.3.1 Virus-cell interaction
  • 1.3.2 Clathrin-mediated endocytosis
  • 1.4 Genome replication and translation
  • 1.4.1 Replication and transcription
  • 1.4.2 Translation
  • 1.5 Assembly
  • 1.5.1 Virus-induced cell remodeling
  • 1.5.2 Virion assembly
  • 1.6 Egress
  • 1.6.1 A novel egress pathway
  • 1.7 General aspects of the immune response to a viral infection
  • 1.7.1 Type I interferon and the antiviral state
  • 1.7.2 Dendritic cells
  • 1.7.3 Natural killer cells
  • 1.7.4 Macrophages
  • 1.7.5 Cellular immune response
  • 1.7.6 The humoral immune response
  • 1.8 Concluding remarks
  • Acknowledgments
  • References
  • 2 Fundamental aspects of the structural biology of coronaviruses
  • 2.1 Introduction
  • 2.2 The structural proteins
  • 2.2.1 Envelope protein
  • 2.2.2 Nucleocapsid protein
  • 2.2.3 Membrane protein
  • 2.2.4 Spike protein
  • 2.3 The viral proteases
  • 2.3.1 Main protease
  • 2.3.2 Papain-like protease
  • 2.4 The accessory proteins
  • 2.4.1 Protein 3a
  • 2.4.2 Protein 7a
  • 2.4.3 Protein 8
  • 2.4.4 Protein 9b
  • 2.5 Concluding remarks
  • References
  • 3 Introduction to the SARS-CoV-2/COVID-19 epidemiology
  • 3.1 Introduction
  • 3.2 Epidemiology
  • 3.3 Clinical characteristics
  • 3.3.1 Definition of a suspected case established by the WHO
  • 3.4 Impact of COVID-19
  • 3.5 Infection in pediatrics
  • 3.6 Vitamin D and COVID-19
  • 3.7 Epidemiology analysis of the SARS-CoV-2 outbreak
  • 3.8 Immune response and reinfections
  • 3.9 SARS-CoV-2 variants
  • 3.10 Closing remarks
  • References.
  • 4 Structural biology of the SARS-CoV-2 replisome: evolutionary and therapeutic implications
  • 4.1 Introduction
  • 4.2 Structural biology of SARS-CoV-2
  • 4.3 The SARS-CoV-2 replisome: expanding knowledge through structural biology
  • 4.4 The RNA-dependent RNA polymerase
  • 4.5 Nsp7 and nsp8 processivity actors
  • 4.6 Nsp13 helicase
  • 4.7 Nsp14 exonuclease and N7-methyltransferase
  • 4.8 Nsp9 single-stranded RNA-binding protein
  • 4.9 Nsp10-nsp14 and nsp16 cofactor
  • 4.10 The nonenzymatic synthesis of nucleosides and their derivatives: from the prebiotic chemistry to therapeutic agents
  • 4.11 On the origin and early evolution of RNA viruses and SARS-CoV-2
  • 4.12 The emergence of new infectious diseases by zoonoses
  • 4.13 Conclusion
  • Acknowledgments
  • References
  • 5 Clinical progression of patients with COVID-19: the impact of the pandemic in Latin America
  • 5.1 Introduction
  • 5.2 COVID-19-associated pathogenesis
  • 5.2.1 The SARS-CoV-2 effect on multiple organs is associated with ACE2 expression
  • 5.2.2 Underlying comorbidities and lethality
  • 5.2.3 The clinical usefulness of clustering symptoms
  • 5.3 COVID-19 behavior in Latin America
  • 5.3.1 Viral outbreaks in Latin America
  • 5.3.2 Latin America: the epicenter of COVID-19
  • 5.3.3 Underlying comorbidities in Latin America
  • 5.3.4 Most common COVID-19 symptoms in Latin America
  • 5.4 COVID-19 in Mexico
  • 5.4.1 COVID-19 in Mexico: lethality, comorbidities and symptoms
  • 5.5 Remarks
  • References
  • 6 Overview of the immune response against SARS-CoV-2
  • 6.1 Introduction
  • 6.2 Virion structure
  • 6.3 Viral cycle
  • 6.3.1 Transcription and translation
  • 6.3.2 Replication complex of SARS-CoV-2
  • 6.3.3 Egress
  • 6.4 Protein organization of SARS-CoV-2
  • 6.4.1 Spike protein
  • 6.4.2 Nucleocapsid protein
  • 6.5 The innate immune response against SARS-CoV-2
  • 6.5.1 Evasion mechanisms.
  • 6.6 The immune response against SARS-CoV-2
  • 6.6.1 Humoral immunity against SARS-CoV-2 infection
  • 6.7 Neutralizing antibodies
  • 6.8 Immunopathology of COVID-19
  • 6.9 Conclusion
  • Acknowledgment
  • Conflicts of interest
  • References
  • 7 Viral-vectored vaccines against SARS-CoV-2
  • 7.1 Introduction
  • 7.2 Development of COVID-19 vaccines
  • 7.2.1 COVID-19 vaccines breaking record times to first-in-human trials
  • 7.2.2 Classical versus next-generation vaccine platforms
  • 7.2.2.1 Classical vaccine platforms
  • 7.2.2.2 Next-generation vaccine platforms
  • 7.2.3 COVID-19 vaccine pipelines in clinical evaluation and viral-vectored vaccines
  • 7.2.4 Leading viral-vectored vaccine candidates in Phase III trial
  • 7.3 Concluding remarks
  • Acknowledgment
  • References
  • 8 RNA-based vaccines against SARS-CoV-2
  • 8.1 Introduction
  • 8.2 Principles of mRNA vaccines
  • 8.3 Liposomes as vaccine delivery vehicles
  • 8.3.1 Synthesis of liposomes
  • 8.3.2 Modification of liposomes
  • 8.4 The mRNA-1273 vaccine developed by Moderna Inc
  • 8.4.1 SARS-CoV-2-S-2P mRNA synthesis and lipid nanoparticle formulation
  • 8.4.2 Preclinical trial: mouse studies
  • 8.4.3 Phase I
  • 8.4.4 Preclinical trial: nonhuman primates
  • 8.4.5 Phase I: older adults
  • 8.4.6 Phase III
  • 8.5 BNT162b1 and BNT162b2 vaccines developed by Pfizer and BioNTech
  • 8.5.1 Preclinical trial
  • 8.5.2 Phase I/II
  • 8.5.2.1 German trial (NCT04380701, EudraCT:2020-001038-36)
  • 8.5.3 Phase I trial including older adults and BNT162b2
  • 8.5.3.1 ClinicalTrials.gov identifier, NCT04368728
  • 8.5.4 Decision between the two vaccine candidates BNT162
  • 8.5.5 Phase II/III: BNT162b2
  • 8.6 CVnCoV vaccine developed by CureVac
  • 8.6.1 Preclinical trials
  • 8.6.2 Mice
  • 8.6.3 Syrian hamster
  • 8.6.4 Rhesus macaques
  • 8.6.5 Phase I
  • 8.7 Concluding remarks and perspectives
  • References.
  • 9 Particulate vaccines against SARS-CoV-2
  • 9.1 Introduction
  • 9.1.1 The COVID-19 pandemic
  • 9.1.2 A severe contagious disease
  • 9.1.3 Characteristics of SARS-CoV-2
  • 9.2 Vaccines in development
  • 9.2.1 Vaccines against SARS-CoV-2
  • 9.2.2 Vaccines in clinical trials
  • 9.2.3 On the vaccines under development
  • 9.3 Particulate vaccines
  • 9.3.1 Definitions and existing reports
  • 9.3.2 Benefits of nanovaccines and considerations
  • 9.4 Vaccines based on lipid nanoparticles
  • 9.5 Inorganic nanoparticles as carriers
  • 9.5.1 Composition and synthesis
  • 9.5.2 Gold, silver, and iron oxide nanoparticles
  • 9.6 Nanovaccines against SARS-CoV-2
  • 9.7 Concluding remarks
  • References
  • 10 Virus-like particle-based vaccines against SARS-CoV-2
  • 10.1 Introduction
  • 10.2 Potential of VLP-based vaccines
  • 10.3 HBV vaccines
  • 10.4 HEV vaccines
  • 10.5 HPV vaccines
  • 10.6 Precedents of VLP-based vaccines against human coronaviruses
  • 10.7 VLP-based vaccines against SARS-CoV-2
  • 10.8 Concluding remarks
  • Funding
  • References
  • 11 Innovative recombinant protein-based vaccines against SARS-CoV-2
  • 11.1 Introduction
  • 11.2 SARS-CoV, the vaccines proposed before COVID-19
  • 11.3 Current vaccines proposed for SARS-CoV-2
  • 11.4 Vaccine platforms implemented for SARS-CoV-2
  • 11.5 SARS-CoV-2 protein-based vaccines
  • 11.6 The rational design of the antigen by bioinformatics strategies
  • 11.7 Current vaccine candidates based on recombinant proteins
  • 11.8 The NVX-CoV2373 vaccine
  • 11.9 Preclinical trials
  • 11.9.1 Mouse studies
  • 11.10 Nonhuman primates studies
  • 11.10.1 Olive baboons
  • 11.10.2 Cynomolgus macaques
  • 11.11 Clinical trials
  • 11.12 The VAT00002 vaccine
  • 11.12.1 Clinical trial
  • 11.13 The ZF2001 vaccine
  • 11.13.1 Clinical trial
  • 11.14 Efforts to develop a vaccine in Mexico
  • 11.15 Concluding remarks and perspectives.