Cargando…

Cyanobacterial lifestyle and its applications in biotechnology /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Singh, Prashant (Editor ), Fillat, Maria (Editor ), Kumar, Ajay, PhD (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London : Academic Press, [2022]
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Front cover
  • Half title
  • Full title
  • Copyright
  • Contents
  • Contributors
  • About the editors
  • Preface
  • 1
  • Cyanobacterial diversity concerning the extreme environment and their bioprospecting
  • 1.1 Introduction
  • 1.2 Systematic study of extremophiles cyanobacteria
  • 1.2.1 Thermophiles
  • 1.2.2 Psychrophiles
  • 1.2.3 Halophiles
  • 1.2.4 Acidophiles
  • 1.2.5 Alkaliphiles
  • 1.2.6 Xerophilic
  • 1.3 Application of extremophile cyanobacteria
  • 1.4 Conclusions
  • References
  • Chapter 2
  • Cyanobacterial nanoparticles: Application in agriculture and allied sectors
  • 2.1 Introduction
  • 2.2 Nanobiotechnology
  • 2.3 Nanoparticles
  • 2.3.1 Types of NPs
  • 2.4 Cyanobacterial NPs
  • 2.5 Synthesis of NPs
  • 2.5.1 Physical synthesis
  • 2.5.2 Chemical synthesis
  • 2.5.3 Biological synthesis of NPs
  • 2.5.3.1 Intracellular green synthesis of NPs
  • 2.5.3.2 Extracellular green synthesis of NPs
  • 2.5.4 Cyanobacteria as a source of NPs synthesis
  • 2.5.4.1 Cyanobacterial way of intracellular synthesis of NPs
  • 2.5.4.2 Cyanobacterial way of extracellular synthesis of NPs
  • 2.5.4.2.1 Cell-free media
  • 2.5.4.2.2 Cell biomass filtrate
  • 2.5.4.2.3 Biomolecule-based NP synthesis
  • 2.6 Characterization of NPs
  • 2.7 Mode of action
  • 2.8 Applications of cyanobacterial-based NPs
  • 2.9 Future projections of cyanobacteria-based NPs
  • 2.10 Limitations of NPs
  • 2.11 Conclusion
  • References
  • Chapter 3
  • Cyanobacterial photosynthetic reaction center in wobbly light: Modulation of light energy by orange carotenoid ...
  • 3.1 Introduction
  • 3.2 Fates of light energy absorbed by pigments
  • 3.3 Light-harvesting complex organization in cyanobacteria
  • 3.4 Modulation of light energy in cyanobacteria (photoprotective mechanism)
  • 3.4.1 Photoprotective mechanism mediated through phycobilisome.
  • 3.4.2 The orange carotenoid proteins (OCP)
  • 3.4.3 Full antenna capacity recovery: the role of FRP
  • 3.5 Mechanism of OCP-mediated light modulation in cyanobacteria
  • 3.5.1 Cyanobacterial reaction center in high light: OCP is a significant game-changer
  • 3.5.2 Cyanobacterial reaction center under low light/dark: FRP is a significant game-changer
  • 3.6 Conclusions
  • References
  • 4
  • Back to the past: Improving photosynthesis with cyanobacterial genes
  • 4.1 Introduction
  • 4.2 Engineering cyanobacterial genes not related to photosynthesis
  • 4.2.1 Stress response
  • 4.2.2 Amino acid metabolism
  • 4.2.3 Lipid metabolism
  • 4.3 Manipulation of cyanobacterial genes related to photosynthesis in plants
  • 4.3.1 Introduction of CCMs in plants
  • 4.3.2 Manipulation of carbon assimilation
  • 4.3.3 Manipulation of carbon uptake/transport
  • 4.3.4 Sugar partitioning and utilization
  • 4.3.5 Introduction of cyanobacterial proteins into the photosynthetic electron transport chain
  • 4.3.5.1 The cyanobacterial lost genes: flavodoxin as a source for photosynthesis stress protection
  • 4.3.5.2 The cyanobacterial lost genes: flavo-diiron proteins, boosting higher plants photosynthetic processes
  • 4.4 Concluding remarks
  • References
  • 5
  • Promises and challenges for expanding the use of N 2 -fixing cyanobacteria as a fertilizer for sustainable agriculture
  • 5.1 Food security, sustainable agriculture, and N-fertilizers
  • 5.2 Biological nitrogen fixation
  • 5.3 Cyanobacterial BNF
  • 5.3.1 Evolutionary origins
  • 5.3.2 Ecological implications of N 2 -fixing cyanobacteria
  • 5.3.3 Nitrogenase enzyme
  • 5.3.3.1 nif genes
  • 5.3.3.2 Nitrogenase sensitivity to oxygen
  • 5.3.4 N 2 fixation in HC: spatial separation
  • 5.3.4.1 N 2 fixation in NHC: temporal separation only, or temporal plus spatial separation ( Trichodesmium).
  • 5.4 Cyanobacteria as biofertilizers
  • 5.4.1 Living cyanobacteria-dependent traits
  • 5.4.1.1 Release of fixed N 2
  • 5.4.1.2 Release of fixed carbon
  • 5.4.1.3 Enhancement of phosphorus availability
  • 5.4.1.4 Release of phytohormones
  • 5.4.2 Cyanobacterial biomass-dependent traits: mineralization pathway
  • 5.5 Cyanobacteria and microalgae mass culture technology
  • 5.5.1 Open systems
  • 5.5.1.1 Raceway ponds
  • 5.5.1.2 Thin-layer cascades
  • 5.5.1.3 Turf scrubbers
  • 5.5.2 Closed systems
  • 5.6 Use of wastewater for cyanobacteria culture
  • 5.7 Downstream process: harvesting and drying processes
  • 5.8 Large-scale project for cyanobacterial- or microalgal biomass-based fertilizers
  • Acknowledgments
  • References
  • Chapter 6
  • Thermophilic and thermotolerant cyanobacteria: Environmental and biotechnological perspectives
  • 6.1 Introduction
  • 6.2 Thermophilic cyanobacteria diversity
  • 6.3 Temperature stress responses in thermophiles cyanobacteria
  • 6.4 Biotechnological application of thermophilic cyanobacteria
  • 6.5 Metabolic engineering in cyanobacteria
  • 6.6 Conclusion
  • Acknowledgments
  • References
  • Chapter 7
  • Exploring the ability of cyanobacterial ferric uptake regulator (FUR) proteins to increase yeast tolerance to ...
  • 7.1 Introduction
  • 7.2 Materials and methods
  • 7.2.1 Strains and growth conditions
  • 7.2.2 Cloning and transformation procedures
  • 7.2.3 Western blot
  • 7.2.4 Construction of the Green fluorescent protein (GFP)-tagged S. cerevisiae
  • 7.2.5 Fluorescence microscopy
  • 7.3 Results
  • 7.3.1 Generation of S. cerevisiae strains expressing FurA and FurB from Anabaena sp. PCC 7120
  • 7.3.2 Expression of FurB in S. cerevisiae increases its sensitivity to copper and manganese.
  • 7.3.3 The presence of FurB in S. cerevisiae enhances the effects of membrane-damaging compounds and saline stress
  • 7.3.4 Fur proteins confer increased tolerance to oxidative stress in S. cerevisiae
  • 7.3.5 Recombinant FurB is located in the cytosol of S. cerevisiae
  • 7.4 Discussion
  • References
  • Chapter 8
  • Exploring ecological diversity and biosynthetic potential of cyanobacteria for biofuel production
  • 8.1 The biosynthetic potential of cyanobacteria
  • 8.2 Genomic diversity and genetic tools for cyanobacteria
  • 8.3 Cyanobacterial biofuels
  • 8.4 Hydrogen biofuel
  • References
  • Chapter 9
  • Cyanobacterial availability for CRISPR-based genome editing: Current and future challenges
  • 9.1 Introduction
  • 9.2 CRISPR/Cas9-based genome editing in cyanobacteria
  • 9.3 CRISPR/Cas9-mediated cyanobacterial genome editing
  • 9.4 CRISPR/Cas12a-mediated genome editing in cyanobacteria
  • 9.5 Dead Cas9 (dCas9) and cyanobacterial gene expression
  • 9.6 dCas9 offers an alternative approach for cyanobacterial metabolic engineering
  • 9.7 Cyanobacterial genome editing offers markerless selection and gene multiplexing
  • 9.8 Cyanobacterial genome editing: key challenges
  • 9.9 Conclusion and prospects
  • Acknowledgments
  • References
  • Chapter 10
  • Cyanobacteria and salinity stress tolerance
  • 10.1 Introduction
  • 10.2 Distribution of cyanobacteria in the saline ecosystem
  • 10.3 Sensing salinity by cyanobacterial cell
  • 10.3.1 Salinity sensing by SOS pathway
  • 10.4 Physiological and biochemical responses
  • 10.4.1 Photosynthesis
  • 10.4.2 Plasma membrane
  • 10.4.3 Nitrogen fixation
  • 10.4.4 Formation of ROS and antioxidative defense system
  • 10.5 Accumulation of compatible solutes
  • 10.5.1 Biosynthesis of compatible solutes
  • 10.5.1.1. Glucosyl glycerate (GG) synthesis
  • 10.5.2 Glycine betaine synthesis.
  • 10.5.3 Sucrose synthesis
  • 10.5.4 Trehalose synthesis
  • 10.6 Mechanism of salt tolerance
  • 10.6.1 Stress response proteins
  • 10.6.1.1 Na+ influx
  • 10.6.1.2 Na + efflux
  • 10.6.1.3 Limitation of K + uptake
  • 10.7 Role of cyanobacteria in the remediation of salt-affected soil
  • 10.8 Conclusion
  • Acknowledgments
  • References
  • Chapter 11
  • Cyanobacteria as biostimulants in the paddy fields
  • 11.1 Introduction
  • 11.2 Cyanobacterial biostimulants and plant growth-promoting potential
  • 11.3 Cyanobacteria and their extracts: impacts on crops' productivity
  • 11.3.1 Role of cyanobacterial metabolites in soil health improvement
  • 11.3.1.1 Nitrogen fixation
  • 11.3.1.2 Soils nutrients' bioavailability
  • 11.3.1.3 Amendments in soil physical and chemical properties
  • 11.3.3 Crops direct growth stimulation
  • 11.3.4 Crops' protection against stresses
  • 11.3.4.1 Protection against abiotic stresses
  • 11.3.4.2 Protection against biotic stresses
  • 11.4 Cyanobacteria as biostimulants in agriculture
  • 11.5 Other biostimulants and their role in plant growth stimulations
  • 11.6 Challenges involved in using cyanobacteria as biostimulants
  • 11.7 Prospects and conclusion
  • Acknowledgment
  • References
  • Chapter 12
  • Molecular characterization of local cyanobacterial isolates using 16S rRNA , rpo B, and nif H biomarkers
  • 12.1 Introduction
  • 12.2 Molecular markers used to assess cyanobacterial biodiversity
  • 12.2.1 16S rRNA gene
  • 12.2.2 RNA polymerase
  • 12.2.3 nif H gene
  • 12.3 Biodiversity documentation
  • 12.4 Molecular characterization of local cyanobacterial isolates
  • 12.5 Phylogenetic analysis of local cyanobacterial isolates using three different biomarkers
  • 12.5.1 16S rRNA gene-based phylogenetic tree
  • 12.5.2 rpo B gene-based phylogenetic tree
  • 12.5.3 nif H gene-based phylogenetic tree.