Tabla de Contenidos:
  • Front Cover
  • Long-Acting Drug Delivery Systems
  • Copyright Page
  • Contents
  • List of contributors
  • Preface
  • 1 Overview of the clinical current needs and potential applications for long-acting and implantable delivery systems
  • 1.1 Introduction
  • 1.2 LADDS versus conventional routes for drug administration
  • 1.3 Current applications of long-acting drug delivery system
  • 1.3.1 Contraception
  • 1.3.2 Cancer
  • 1.3.3 Ocular diseases
  • 1.3.4 Chronic conditions and other applications
  • 1.4 Future applications of long-acting drug delivery system
  • References
  • 2 Classification, material types, and design approaches of long-acting and implantable drug delivery systems
  • 2.1 Introduction
  • 2.2 Implantable polymeric drug delivery device classification
  • 2.2.1 Solid implants
  • 2.2.1.1 Passive implants
  • 2.2.1.2 Active implants
  • 2.2.2 Injectable long-acting formulations
  • 2.2.2.1 Long-acting nano/microparticle suspensions
  • 2.2.2.2 In situ forming implants
  • Phase separation systems
  • Hydrogels
  • Organogels
  • 2.3 Mechanism of drug release from implantable and long-acting drug delivery systems
  • 2.3.1 Mechanism of drug release from solid implants
  • 2.3.2 Mechanism of release from nano/microparticulate injectable formulations
  • 2.3.3 Mechanism of release from in situ forming implants
  • 2.4 Materials used for implantable and long-acting drug delivery systems manufacturing
  • 2.4.1 Materials used for solid implant manufacturing
  • 2.4.1.1 Polymeric materials
  • Biodegradable polymers
  • Aliphatic polyesters
  • Poly(lactic acid)
  • Poly(glycolic acid)
  • Poly(lactic-co-glycolic acid)
  • Poly(caprolactone)
  • Other biodegradable polymers
  • Non biodegradable polymers
  • Poly(siloxanes)
  • Poly(ethylene-vinyl acetate)
  • Polyurethanes
  • 2.4.1.2 Natural polymers
  • Cellulose
  • Chitosan
  • Silk
  • 2.4.1.3 Nonpolymeric materials.
  • Metals
  • Hydroxyapatite and tricalcium phosphate
  • Other nonpolymeric materials
  • 2.4.2 Materials used to prepare injectable long-acting formulations
  • 2.4.2.1 Long-acting nano/microparticle suspensions
  • 2.4.2.2 In situ forming implants
  • Hydrogels
  • Hyaluronic acid
  • Alginate
  • Collagen and gelatin
  • Block copolymers
  • Poly(N-isopropylacrylamide)
  • Organogels
  • 2.5 Manufacturing methods of implants and long-acting formulations
  • 2.5.1 Manufacturing of solid implants
  • 2.5.1.1 Compression
  • 2.5.1.2 Solvent casting
  • 2.5.1.3 Hot melt extrusion
  • 2.5.1.4 Injection molding
  • 2.5.1.5 Electrospinning
  • 2.5.1.6 3D printing
  • 2.5.2 Methods to prepare in situ forming injectable implants
  • 2.5.2.1 Methods of micro/nanosuspension and micro/nanoparticle preparation
  • Spray drying
  • Microfluidics
  • Electrospraying
  • Milling
  • High pressure homogenization and ultrasonication
  • 2.6 Implantable polymeric device design
  • 2.7 Conclusions
  • References
  • 3 Long-acting drug delivery systems for ocular therapies
  • 3.1 Introduction
  • 3.2 Contact lenses and other ocular inserts on the surface as long-acting systems
  • 3.3 Long-acting systems for the anterior segment
  • 3.4 Periocular delivery of long-acting systems
  • 3.5 Long-acting intravitreal systems
  • 3.6 Long-acting micro/nanoparticulate delivery systems
  • 3.7 In situ forming long-acting implants for ocular delivery
  • 3.8 Conclusion and future directions
  • References
  • 4 Applications of long-lasting and implantable drug delivery systems for cardiovascular disease treatment
  • 4.1 Introduction: Cardiovascular disease and atherosclerosis
  • 4.2 Pathophysiology of atherosclerosis
  • 4.3 Treatments for atherosclerosis
  • 4.4 Stenting
  • 4.5 Future directions in stent development
  • 4.6 3D printing
  • 4.7 Stents manufactured via selective laser sintering.
  • 4.8 Stents manufactured via MJ
  • 4.9 Stents manufactured via stereolithography
  • 4.10 Two-photon polymerization
  • 4.11 Targeted treatments for other CVDs
  • 4.12 Conclusion
  • References
  • 5 Implantable and long-lasting drug delivery systems for cancer treatment
  • 5.1 Introduction
  • 5.2 Implantable drug delivery systems
  • 5.2.1 Nonbiodegradable versus biodegradable implantable drug delivery systems
  • 5.2.2 Implantable drug delivery systems applications in cancer treatment
  • 5.2.2.1 Chemotherapy
  • 5.2.2.2 Induce hyperthermia
  • 5.2.2.3 Photodynamic therapy
  • 5.2.2.4 Gene therapy
  • 5.2.2.5 Immunotherapy
  • 5.3 Conclusion
  • Acknowledgments
  • References
  • 6 Long-acting drug delivery systems: applications for sexual and reproductive health
  • 6.1 Introduction
  • 6.2 Sexual and reproductive health physical and pathological challenges
  • 6.3 Different approaches to conquer the physical and pathological obstacles associated with sexual and reproductive health
  • 6.4 Drug delivery systems used in the field of sexual and reproductive health
  • 6.4.1 Nanomedicine and nanoparticles
  • 6.4.1.1 Reproductive cancers
  • 6.4.1.2 Endometriosis
  • 6.4.1.3 Uterine fibroids
  • 6.4.1.4 Pregnancy
  • 6.4.1.5 HIV and genital infections
  • 6.4.1.6 Assisted reproductive technology
  • 6.4.1.7 Erectile dysfunction
  • 6.4.2 Exosomes
  • 6.4.2.1 Breast cancer
  • 6.4.2.2 Obstetrical applications of exosomes
  • 6.4.3 Liposomes
  • 6.4.3.1 Breast cancer
  • 6.4.3.2 Ovarian cancer
  • 6.4.3.3 Treatment of HIV complications
  • 6.4.3.4 Preterm labor
  • 6.4.3.5 Prostate cancer
  • 6.4.3.6 Erectile dysfunction
  • 6.4.4 Micelles
  • 6.4.5 Liquid crystals
  • 6.4.6 Polymer gels
  • 6.4.7 Sperm-hybrid micromotors for drug delivery in the female reproductive tract
  • 6.5 Advances in long-acting contraceptive drug delivery systems
  • 6.5.1 Copper-bearing intrauterine devices.
  • 6.5.2 Levonorgestrel-releasing intrauterine system
  • 6.5.3 Progestin-containing subdermal contraceptive implants
  • 6.5.4 Effervescent microneedle patch
  • 6.6 Advances in long-acting drug delivery systems in AIDS prophylaxis
  • 6.7 Conclusion
  • Acknowledgments
  • References
  • 7 Long-acting drug delivery systems for schizophrenia treatment
  • 7.1 Introduction
  • 7.1.1 LAI formulations
  • 7.2 Who would benefit from LAI antipsychotics: understanding the indications through mechanism
  • 7.2.1 Adherence translates into effectiveness
  • 7.2.2 Direct medical supervision enhances the outcome
  • 7.2.3 Pharmacokinetics of LAI antipsychotics influencing the clinical decisions
  • 7.2.4 Pharmacodynamics: differences in dopamine receptor antagonism
  • 7.2.5 LAI antipsychotic may reverse altered receptor sensitivity
  • 7.2.6 Neuroplasticity
  • 7.3 Special indications
  • 7.4 Evidence for superiority of LAI antipsychotic over oral antipsychotics
  • 7.5 When to start LAI?
  • 7.6 Comparative tolerability of LAI antipsychotics
  • 7.7 How to initiate LAI antipsychotic?
  • 7.8 Choosing among FGA LAIs and SGA LAIs: newer the better or old is gold?
  • 7.9 Clinical utility of LAI antipsychotics: the ground reality
  • 7.10 Noninjectable long-acting formulations
  • 7.11 Conclusion
  • Acknowledgment
  • Conflict of interest
  • References
  • 8 Implantable and long-lasting drug delivery systems for infectious, inflammatory, endocrine, and neurodegenerative diseases
  • 8.1 Introduction
  • 8.2 Implantable and long-lasting drug delivery systems for infectious diseases
  • 8.2.1 Tuberculosis
  • 8.2.2 Malaria
  • 8.2.3 Hepatitis B
  • 8.3 Implantable and long-lasting drug delivery systems for inflammatory diseases
  • 8.3.1 Osteoarthritis
  • 8.3.2 Long-acting delivery of NSAID drugs
  • 8.3.3 Long-acting delivery of steroid drugs.
  • 8.4 Implantable and long-lasting drug delivery systems for endocrine diseases
  • 8.4.1 Hypothyroidism
  • 8.4.2 Growth hormone
  • 8.5 Implantable and long-lasting drug delivery systems for neurodegenerative diseases
  • References
  • 9 Long-lasting drug delivery systems based on microneedles
  • 9.1 Introduction
  • 9.2 Microneedle array patch as a long-acting drug delivery tool
  • 9.2.1 Type of microneedle array patch formulations
  • 9.3 Long-acting microneedle array patch formulations
  • 9.3.1 Microneedle array patches formulation methodologies for long-acting delivery
  • 9.3.1.1 Nano/microparticles delivery by microneedle array patch
  • 9.3.1.2 Slow dissolving microneedle array patch
  • Poly(lactide-co-glycolide)/polylactic acid microneedle array patches
  • Silk fibroin microneedle array patches
  • Chitosan microneedle array patches
  • 9.3.1.3 Stimuli-responsive smart microneedle array patch
  • 9.3.1.4 Hollow microneedles
  • 9.4 Application of microneedle array patches for long-acting drug delivery
  • 9.4.1 Vaccine
  • 9.4.2 Lymphatic targeting
  • 9.4.3 HIV infection
  • 9.4.4 Contraceptives
  • 9.4.5 Antipsychotics
  • 9.4.6 Insulin
  • 9.4.7 Skin diseases
  • 9.5 Laboratory to large-scale considerations
  • 9.6 Conclusion and future prospects of microneedle array patch
  • References
  • 10 Safety, biodegradability, and biocompatibility considerations of long-acting drug delivery systems
  • 10.1 Introduction
  • 10.2 Biodegradation as per international regulatory bodies
  • 10.2.1 Experimental design consideration for the fabrication of biodegradable implants
  • 10.2.2 Initial quantification of implants before degradation studies
  • 10.2.3 Preparation of biodegradation medium
  • 10.2.4 Containers
  • 10.2.5 Number of samples
  • 10.2.6 Experimental procedure
  • 10.2.7 Real-time biodegradation
  • 10.2.8 Accelerated degradation
  • 10.2.9 Final characterization.