|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
SCIDIR_on1268682979 |
003 |
OCoLC |
005 |
20231120010605.0 |
006 |
m o d |
007 |
cr cnu---unuuu |
008 |
210922s2021 cau o 000 0 eng d |
040 |
|
|
|a YDX
|b eng
|e rda
|e pn
|c YDX
|d UKAHL
|d N$T
|d OPELS
|d YDX
|d OCLCO
|d EBLCP
|d UKMGB
|d OCLCF
|d OCLCO
|d OCLCQ
|d MUU
|d OCLCO
|d SFB
|d OCLCQ
|
015 |
|
|
|a GBC213306
|2 bnb
|
016 |
7 |
|
|a 020367516
|2 Uk
|
019 |
|
|
|a 1272989567
|a 1273976234
|a 1276856129
|a 1277047694
|
020 |
|
|
|a 9780128240397
|q (electronic book)
|
020 |
|
|
|a 0128240393
|q (electronic book)
|
020 |
|
|
|a 9780128240380
|q (electronic book)
|
020 |
|
|
|a 0128240385
|q (electronic book)
|
035 |
|
|
|a (OCoLC)1268682979
|z (OCoLC)1272989567
|z (OCoLC)1273976234
|z (OCoLC)1276856129
|z (OCoLC)1277047694
|
050 |
|
4 |
|a TD193
|b .B43 2021
|
072 |
|
7 |
|a SCI
|x 010000
|2 bisacsh
|
072 |
|
7 |
|a TEC
|x 020000
|2 bisacsh
|
072 |
|
7 |
|a TDP
|2 bicssc
|
072 |
|
7 |
|a UYQM
|2 bicssc
|
082 |
0 |
4 |
|a 363.7063028563
|2 23
|
100 |
1 |
|
|a Bhattacharyya, Siddhartha.
|
245 |
1 |
0 |
|a Cognitive Data Models for Sustainable Environment.
|
264 |
|
1 |
|a San Diego, CA :
|b Elsevier Science & Technology,
|c [2021]
|
300 |
|
|
|a 1 online resource
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Cognitive Data Science in Sustainable Computing Ser.
|
520 |
|
|
|a Cognitive Models for Sustainable Environment reviews the fundamental concepts of gathering, processing and analyzing data from batch processes, along with a review of intelligent and cognitive tools that can be used. The book is centered on evolving novel intelligent/cognitive models and algorithms to develop sustainable solutions for the mitigation of environmental pollution. It unveils intelligent and cognitive models to address issues related to the effective monitoring of environmental pollution and sustainable environmental design. As such, the book focuses on the overall well-being of the global environment for better sustenance and livelihood. The book covers novel cognitive models for effective environmental pollution data management at par with the standards laid down by the World Health Organization. Every chapter is supported by real-life case studies, illustrative examples and video demonstrations that enlighten readers.
|
650 |
|
0 |
|a Environmental monitoring
|x Data processing.
|
650 |
|
0 |
|a Pollution
|x Measurement
|x Data processing.
|
650 |
|
0 |
|a Soft computing.
|
650 |
|
6 |
|a Environnement
|0 (CaQQLa)201-0019669
|x Surveillance
|0 (CaQQLa)201-0019669
|x Informatique.
|0 (CaQQLa)201-0380011
|
650 |
|
6 |
|a Pollution
|0 (CaQQLa)201-0028872
|x Mesure
|0 (CaQQLa)201-0028872
|x Informatique.
|0 (CaQQLa)201-0380011
|
650 |
|
6 |
|a Informatique douce.
|0 (CaQQLa)201-0286215
|
650 |
|
7 |
|a Environmental monitoring
|x Data processing.
|2 fast
|0 (OCoLC)fst00913219
|
650 |
|
7 |
|a Pollution
|x Measurement
|x Data processing.
|2 fast
|0 (OCoLC)fst01070130
|
650 |
|
7 |
|a Soft computing.
|2 fast
|0 (OCoLC)fst01124115
|
776 |
0 |
8 |
|i Print version:
|z 0128240385
|z 9780128240380
|w (OCoLC)1250310333
|
830 |
|
0 |
|a Cognitive data science in sustainable computing.
|
856 |
4 |
0 |
|u https://sciencedirect.uam.elogim.com/science/book/9780128240380
|z Texto completo
|