Advanced approaches in turbulence : theory, modeling, simulation and data analysis for turbulent flows /
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Amsterdam :
Elsevier,
2021.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Front Cover
- Advanced Approaches in Turbulence
- Copyright
- Contents
- Contributors
- Preface
- 1 Basics of turbulence
- 1.1 Introduction
- 1.2 Eddy diffusion
- 1.3 Scales of turbulence
- 1.3.1 Isotropic decay
- 1.3.2 Stretching and diffusion of vorticity
- 1.4 Spectral equations
- 1.4.1 Isotropic turbulence
- 1.4.2 Shear and streaks
- 1.5 Averaged equations
- 1.5.1 Jets
- 1.5.2 Boundary layer
- 1.6 The form of turbulence models
- 1.6.1 Two equation models
- 1.6.2 Reynolds stress transport
- 1.7 Conclusion
- References
- 2 Direct numerical and large-eddy simulation of complex turbulent flows
- 2.1 Introduction
- 2.2 Error as a function of scale
- 2.2.1 Modified wavenumber
- 2.2.2 Nonlinear sources of error
- 2.2.3 Time advancement error as a function of scale
- 2.3 Analysis of numerical errors in large-eddy simulation using statistical closure theory
- 2.3.1 EDQNM closure
- 2.3.2 EDQNM-LES and the inclusion of numerical error
- 2.3.3 EDQNM model
- 2.3.4 Relative magnitudes of error
- 2.4 Simulations in complex geometries
- 2.4.1 Decay of isotropic turbulence
- 2.4.2 Gas turbine combustor
- 2.5 Simulating the flow around moving bodies
- 2.5.1 Fluid phase
- 2.5.2 Solid phase
- 2.5.3 The effects of interpolation
- 2.5.4 Particles in a turbulent channel
- 2.6 What is a `canonical' flow?
- 2.6.1 Jets in crossflow
- 2.6.2 DNS of turbulent channel flow over random rough surfaces
- 2.7 The analysis of `big data'
- 2.7.1 DMD of large datasets and numerical error
- 2.7.2 Analysis of wall-pressure fluctuation sources in turbulent channel flow
- 2.8 Bridging the Reynolds number divide
- 2.9 Concluding remarks
- Acknowledgments
- References
- 3 Large-eddy simulations
- 3.1 Introduction
- 3.1.1 Motivation
- 3.2 Governing equations
- 3.2.1 Filtering.
- 3.2.2 The filtered equations of motion-the incompressible case
- 3.2.3 The filtered equations of motion-the compressible case
- 3.2.4 Resolution requirements
- 3.3 Subfilter-scale modeling
- 3.3.1 Energy-transfer mechanisms
- 3.3.2 Eddy-viscosity models
- 3.3.3 Non-eddy-viscosity models
- 3.3.4 Implicit LES
- 3.4 Case studies
- 3.4.1 Flow over river dunes
- 3.4.2 Flows over rough walls
- 3.4.3 Azimuthal vortices in an impinging jet
- 3.5 Wall modeled large-eddy simulations
- 3.6 Challenges
- 3.6.1 Computational cost
- 3.6.2 Complex geometries
- 3.6.3 Subfilter-scale modeling
- 3.6.4 URANS and LES
- 3.7 Outlook
- Acknowledgments
- References
- 4 Hybrid RANS-LES Methods
- Introduction, general motivation, and examples
- Classification of hybrid approaches
- ``RANS before LES'' vs ``RANS under LES'' approaches
- DNS-to-RANS bridging approaches
- Zonal vs non-zonal methods
- Versions of detached-eddy simulation
- Definition of the model length scale
- Log-Layer Mismatch
- Guidelines for users
- Grid design
- Time integration
- Conclusions
- Acknowledgments
- References
- 5 Closure modeling
- 5.1 Introduction
- 5.2 Governing flow equations
- 5.2.1 The continuity equation
- 5.2.2 The momentum equation
- 5.3 Turbulent mean flow
- 5.3.1 Time-averaged Navier-Stokes
- 5.3.1.1 Boundary-layer approximation
- 5.3.1.2 Force balance, channel flow
- 5.3.2 Wall region in fully developed channel flow
- 5.3.3 Reynolds stresses in fully developed channel flow
- 5.4 Transport equations for turbulent kinetic energy
- 5.4.1 Rules for time averaging
- 5.4.1.1 What is the difference between u'1 u'2 and u'1 u'2?
- 5.4.1.2 What is the difference between u1�2 and u'12?
- 5.4.1.3 Show that �u1 u1�2 = �u1 u1�2
- 5.4.1.4 Show that �u1 = �u1
- 5.4.2 The exact k equation
- 5.5 Transport equations for Reynolds stresses.
- 6.6.1 Parallelization
- 6.6.2 Randomization and sketching
- 6.6.3 Streaming and incremental algorithms
- 6.6.4 Robustification and outlier removal
- 6.7 Other decompositions
- 6.7.1 Dealing with multimodality
- 6.7.2 Transfer operators and Ulam's method
- 6.7.3 Multiscale analysis and wavelets
- 6.7.4 Machine learning, dictionary learning, sparsity concepts
- 6.8 Conclusions
- References
- 7 Multiphase turbulence
- 7.1 Introduction
- 7.2 Models for disperse multiphase flows
- 7.2.1 Particle-resolved direct-numerical simulation
- 7.2.2 Eulerian-Lagrangian approach
- 7.2.3 Eulerian-Eulerian approach
- 7.2.4 Range of applicability of Eulerian models
- 7.3 Pseudoturbulence
- 7.3.1 Basic properties
- 7.3.2 Experimental results
- 7.3.3 PR-DNS results
- 7.3.4 Pseudoturbulence models
- 7.4 Multiphase turbulence models
- 7.4.1 Reynolds-averaged Eulerian models
- 7.4.2 Detailed example for compressible multiphase flow
- 7.4.2.1 Mass balances
- 7.4.2.2 Momentum balances
- 7.4.2.3 Total energy balances
- 7.4.3 Balances for correlated and uncorrelated energy
- 7.4.4 Balances for the turbulent dissipation rate
- 7.4.5 Balances for Reynolds stresses
- 7.4.6 Limiting cases
- 7.4.7 Concluding remarks
- 7.5 Summary and perspectives
- References
- 8 Transition to turbulence
- 8.1 The phenomena of transition
- 8.1.1 Orderly transition
- 8.1.2 Bypass transition
- 8.1.3 Separated flow
- 8.2 Linear theories
- 8.2.1 Orderly transition
- 8.2.2 Parabolized stability
- 8.2.3 Bypass transition
- 8.2.4 Initial value problem
- 8.3 Secondary instabilities and breakdown to turbulence
- 8.4 Intermittency models
- 8.5 Summary
- References
- 9 Turbulence in compressible flows
- 9.1 Introduction
- 9.1.1 Linearized modes
- 9.1.1.1 Acoustic modes
- 9.1.1.2 Vortical modes
- 9.1.1.3 Entropic modes.
- 9.1.2 A wider perspective on modal decomposition
- 9.2 Classification of compressible turbulent-flow problems
- 9.2.1 Quasi-incompressible flows and low-Mach variable-density flows
- 9.2.2 Compressed turbulence
- 9.2.3 Compressible homogeneous turbulence
- 9.2.4 Compressible free shear flows
- 9.2.5 Boundary layers and shock interactions
- 9.2.6 Thermoacoustics and resonant flow acoustics
- 9.3 Conservation equations: mass, momentum, and energy transport
- 9.4 Statistical description of compressible turbulent flows
- 9.4.1 Favre averaging
- 9.4.2 Conservation equations using Favre-decomposition
- 9.4.2.1 Related transport equations
- 9.4.2.2 Specific volume and density fluctuations
- 9.4.3 Summary of physical processes in variable-density and compressible flows
- 9.4.3.1 Differential acceleration
- 9.4.3.2 Counter-gradient transport
- 9.4.3.3 Baroclinic vorticity generation
- 9.5 Homogeneous turbulence dynamics with compressibility
- 9.5.1 Compressible isotropic turbulence
- 9.5.1.1 Dilatational dissipation and shocklets
- 9.6 Compressibility effects in free-shear flows
- 9.6.1 Direct effects of compressibility on turbulence: compressible mixing layer
- 9.6.2 Summary of observational evidence
- 9.6.3 Explanatory hypotheses
- 9.6.3.1 Suppression of shear instability
- 9.6.3.2 Dilatational dissipation and shocklets
- 9.6.3.3 Indirect effects of compressibility: change in turbulence structure
- 9.6.4 Application to compressible jets and wakes
- 9.7 Compressible wall-bounded turbulence
- 9.7.1 Steady laminar Couette flow
- 9.7.2 Steady compressible channel flow
- 9.7.2.1 Van driest-type scaling of the mean velocity
- 9.7.2.2 Semi-local scaling
- 9.7.3 Supersonic turbulent boundary layers
- 9.7.3.1 Mean temperature profile
- 9.7.3.2 Strong Reynolds analogy
- 9.7.3.3 An update on semi-local scaling.