Cargando…

Advanced approaches in turbulence : theory, modeling, simulation and data analysis for turbulent flows /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Durbin, Paul A.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam : Elsevier, 2021.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Front Cover
  • Advanced Approaches in Turbulence
  • Copyright
  • Contents
  • Contributors
  • Preface
  • 1 Basics of turbulence
  • 1.1 Introduction
  • 1.2 Eddy diffusion
  • 1.3 Scales of turbulence
  • 1.3.1 Isotropic decay
  • 1.3.2 Stretching and diffusion of vorticity
  • 1.4 Spectral equations
  • 1.4.1 Isotropic turbulence
  • 1.4.2 Shear and streaks
  • 1.5 Averaged equations
  • 1.5.1 Jets
  • 1.5.2 Boundary layer
  • 1.6 The form of turbulence models
  • 1.6.1 Two equation models
  • 1.6.2 Reynolds stress transport
  • 1.7 Conclusion
  • References
  • 2 Direct numerical and large-eddy simulation of complex turbulent flows
  • 2.1 Introduction
  • 2.2 Error as a function of scale
  • 2.2.1 Modified wavenumber
  • 2.2.2 Nonlinear sources of error
  • 2.2.3 Time advancement error as a function of scale
  • 2.3 Analysis of numerical errors in large-eddy simulation using statistical closure theory
  • 2.3.1 EDQNM closure
  • 2.3.2 EDQNM-LES and the inclusion of numerical error
  • 2.3.3 EDQNM model
  • 2.3.4 Relative magnitudes of error
  • 2.4 Simulations in complex geometries
  • 2.4.1 Decay of isotropic turbulence
  • 2.4.2 Gas turbine combustor
  • 2.5 Simulating the flow around moving bodies
  • 2.5.1 Fluid phase
  • 2.5.2 Solid phase
  • 2.5.3 The effects of interpolation
  • 2.5.4 Particles in a turbulent channel
  • 2.6 What is a `canonical' flow?
  • 2.6.1 Jets in crossflow
  • 2.6.2 DNS of turbulent channel flow over random rough surfaces
  • 2.7 The analysis of `big data'
  • 2.7.1 DMD of large datasets and numerical error
  • 2.7.2 Analysis of wall-pressure fluctuation sources in turbulent channel flow
  • 2.8 Bridging the Reynolds number divide
  • 2.9 Concluding remarks
  • Acknowledgments
  • References
  • 3 Large-eddy simulations
  • 3.1 Introduction
  • 3.1.1 Motivation
  • 3.2 Governing equations
  • 3.2.1 Filtering.
  • 3.2.2 The filtered equations of motion-the incompressible case
  • 3.2.3 The filtered equations of motion-the compressible case
  • 3.2.4 Resolution requirements
  • 3.3 Subfilter-scale modeling
  • 3.3.1 Energy-transfer mechanisms
  • 3.3.2 Eddy-viscosity models
  • 3.3.3 Non-eddy-viscosity models
  • 3.3.4 Implicit LES
  • 3.4 Case studies
  • 3.4.1 Flow over river dunes
  • 3.4.2 Flows over rough walls
  • 3.4.3 Azimuthal vortices in an impinging jet
  • 3.5 Wall modeled large-eddy simulations
  • 3.6 Challenges
  • 3.6.1 Computational cost
  • 3.6.2 Complex geometries
  • 3.6.3 Subfilter-scale modeling
  • 3.6.4 URANS and LES
  • 3.7 Outlook
  • Acknowledgments
  • References
  • 4 Hybrid RANS-LES Methods
  • Introduction, general motivation, and examples
  • Classification of hybrid approaches
  • ``RANS before LES'' vs ``RANS under LES'' approaches
  • DNS-to-RANS bridging approaches
  • Zonal vs non-zonal methods
  • Versions of detached-eddy simulation
  • Definition of the model length scale
  • Log-Layer Mismatch
  • Guidelines for users
  • Grid design
  • Time integration
  • Conclusions
  • Acknowledgments
  • References
  • 5 Closure modeling
  • 5.1 Introduction
  • 5.2 Governing flow equations
  • 5.2.1 The continuity equation
  • 5.2.2 The momentum equation
  • 5.3 Turbulent mean flow
  • 5.3.1 Time-averaged Navier-Stokes
  • 5.3.1.1 Boundary-layer approximation
  • 5.3.1.2 Force balance, channel flow
  • 5.3.2 Wall region in fully developed channel flow
  • 5.3.3 Reynolds stresses in fully developed channel flow
  • 5.4 Transport equations for turbulent kinetic energy
  • 5.4.1 Rules for time averaging
  • 5.4.1.1 What is the difference between u'1 u'2 and u'1 u'2?
  • 5.4.1.2 What is the difference between u1�2 and u'12?
  • 5.4.1.3 Show that �u1 u1�2 = �u1 u1�2
  • 5.4.1.4 Show that �u1 = �u1
  • 5.4.2 The exact k equation
  • 5.5 Transport equations for Reynolds stresses.
  • 6.6.1 Parallelization
  • 6.6.2 Randomization and sketching
  • 6.6.3 Streaming and incremental algorithms
  • 6.6.4 Robustification and outlier removal
  • 6.7 Other decompositions
  • 6.7.1 Dealing with multimodality
  • 6.7.2 Transfer operators and Ulam's method
  • 6.7.3 Multiscale analysis and wavelets
  • 6.7.4 Machine learning, dictionary learning, sparsity concepts
  • 6.8 Conclusions
  • References
  • 7 Multiphase turbulence
  • 7.1 Introduction
  • 7.2 Models for disperse multiphase flows
  • 7.2.1 Particle-resolved direct-numerical simulation
  • 7.2.2 Eulerian-Lagrangian approach
  • 7.2.3 Eulerian-Eulerian approach
  • 7.2.4 Range of applicability of Eulerian models
  • 7.3 Pseudoturbulence
  • 7.3.1 Basic properties
  • 7.3.2 Experimental results
  • 7.3.3 PR-DNS results
  • 7.3.4 Pseudoturbulence models
  • 7.4 Multiphase turbulence models
  • 7.4.1 Reynolds-averaged Eulerian models
  • 7.4.2 Detailed example for compressible multiphase flow
  • 7.4.2.1 Mass balances
  • 7.4.2.2 Momentum balances
  • 7.4.2.3 Total energy balances
  • 7.4.3 Balances for correlated and uncorrelated energy
  • 7.4.4 Balances for the turbulent dissipation rate
  • 7.4.5 Balances for Reynolds stresses
  • 7.4.6 Limiting cases
  • 7.4.7 Concluding remarks
  • 7.5 Summary and perspectives
  • References
  • 8 Transition to turbulence
  • 8.1 The phenomena of transition
  • 8.1.1 Orderly transition
  • 8.1.2 Bypass transition
  • 8.1.3 Separated flow
  • 8.2 Linear theories
  • 8.2.1 Orderly transition
  • 8.2.2 Parabolized stability
  • 8.2.3 Bypass transition
  • 8.2.4 Initial value problem
  • 8.3 Secondary instabilities and breakdown to turbulence
  • 8.4 Intermittency models
  • 8.5 Summary
  • References
  • 9 Turbulence in compressible flows
  • 9.1 Introduction
  • 9.1.1 Linearized modes
  • 9.1.1.1 Acoustic modes
  • 9.1.1.2 Vortical modes
  • 9.1.1.3 Entropic modes.
  • 9.1.2 A wider perspective on modal decomposition
  • 9.2 Classification of compressible turbulent-flow problems
  • 9.2.1 Quasi-incompressible flows and low-Mach variable-density flows
  • 9.2.2 Compressed turbulence
  • 9.2.3 Compressible homogeneous turbulence
  • 9.2.4 Compressible free shear flows
  • 9.2.5 Boundary layers and shock interactions
  • 9.2.6 Thermoacoustics and resonant flow acoustics
  • 9.3 Conservation equations: mass, momentum, and energy transport
  • 9.4 Statistical description of compressible turbulent flows
  • 9.4.1 Favre averaging
  • 9.4.2 Conservation equations using Favre-decomposition
  • 9.4.2.1 Related transport equations
  • 9.4.2.2 Specific volume and density fluctuations
  • 9.4.3 Summary of physical processes in variable-density and compressible flows
  • 9.4.3.1 Differential acceleration
  • 9.4.3.2 Counter-gradient transport
  • 9.4.3.3 Baroclinic vorticity generation
  • 9.5 Homogeneous turbulence dynamics with compressibility
  • 9.5.1 Compressible isotropic turbulence
  • 9.5.1.1 Dilatational dissipation and shocklets
  • 9.6 Compressibility effects in free-shear flows
  • 9.6.1 Direct effects of compressibility on turbulence: compressible mixing layer
  • 9.6.2 Summary of observational evidence
  • 9.6.3 Explanatory hypotheses
  • 9.6.3.1 Suppression of shear instability
  • 9.6.3.2 Dilatational dissipation and shocklets
  • 9.6.3.3 Indirect effects of compressibility: change in turbulence structure
  • 9.6.4 Application to compressible jets and wakes
  • 9.7 Compressible wall-bounded turbulence
  • 9.7.1 Steady laminar Couette flow
  • 9.7.2 Steady compressible channel flow
  • 9.7.2.1 Van driest-type scaling of the mean velocity
  • 9.7.2.2 Semi-local scaling
  • 9.7.3 Supersonic turbulent boundary layers
  • 9.7.3.1 Mean temperature profile
  • 9.7.3.2 Strong Reynolds analogy
  • 9.7.3.3 An update on semi-local scaling.