Progress in medicinal chemistry. Volume 60 /
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Amsterdam, Netherlands :
Elsevier,
2021.
|
Colección: | Progress in medicinal chemistry ;
volume 60 |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Intro
- Progress in Medicinal Chemistry
- Copyright
- Contents
- Contributors
- Preface
- Chapter Two: PROTACs, molecular glues and bifunctionals from bench to bedside: Unlocking the clinical potential of cataly ...
- 1. PROTACs: Heterobifunctional molecules hijacking the UPS
- 1.1. Historical timeline and milestones of PROTACs
- 1.2. Advantages of PROTACs over small molecule drugs
- 1.3. Key parameters to evaluate PROTAC activity
- 1.4. General considerations for PROTAC design
- 1.5. PROTACs and `molecular glues: Two sub-modalities for targeted degradation emerge
- 2. From concept to practice: Challenges and opportunities in PROTAC development
- 2.1. Considerations and methodologies for POI and E3 ligase selection
- 2.1.1. Genetic fusion technologies
- 2.1.2. Macromolecular strategies
- 2.1.3. Protein modification strategies to expand the E3 ligase toolbox
- 2.2. Optimisation of PROTAC properties and the importance of linkerology
- 2.2.1. Assays to evaluate physicochemical properties of PROTACs in vitro
- 2.2.2. PROTAC linkerology
- 2.3. Assessment of targeted protein degradation in cells
- 2.3.1. Immunoassays
- 2.3.2. Reporter assays
- 2.3.2.1. Fluorescence-based reporter assays
- 2.3.2.2. Luminescence-based reporter assays
- 2.3.3. Mass spectrometry
- 2.3.4. Ubiquitin-proteasome system dependency assays
- 2.4. Quantification of key intracellular events for targeted protein degradation
- 2.4.1. Ternary complex formation
- 2.4.2. Target ubiquitination
- 2.5. PROTAC development workflow
- 3. Scope of targeted protein degradation
- 3.1. Proteins degraded: An overview
- 3.2. Oncology targets at the forefront of TPD
- 3.3. The search for novel E3 ligase ligands: Opportunities in TPD
- 3.3.1. Chemoproteomics as a tool for the identification of E3 ligase ligands
- 3.3.2. Rational identification of molecular glues.
- 3.4. Degrading `challenging targets
- 3.4.1. Signal transducer and activator of transcription 3
- 3.4.2. Tau
- 4. Current progress in PROTAC translational research
- 4.1. Transitioning PROTACs from the bench to the clinic
- 4.1.1. The hurdles of pharmacokinetic optimisation
- 4.1.2. PROTACs degrade target proteins in vivo
- 4.2. PROTACs in clinical trials: The race for the first approval
- 5. Emerging approaches in targeted protein degradation
- 5.1. Targeted delivery and conditional activation of PROTACs
- 5.1.1. Tissue-selective protein degradation: Antibody-PROTAC conjugates
- 5.1.2. Spatiotemporal control of protein degradation: Conditional activation of PROTACs with light
- 5.2. Alternative approaches for targeted protein degradation
- 5.2.1. Proteasomal degradation: BioPROTACs
- 5.2.2. Lysosomal degradation: LYTACs, AUTACs and ATTECs
- 5.2.2.1. LYTACs: Protein degradation through the endosome/lysosome pathway
- 5.2.2.2. AUTACs and ATTEC: Protein degradation through the autophagy pathway
- 5.3. From chimeric degraders to heterobifunctionals: Expanding the proximity-induction paradigm
- 5.3.1. RIBOTACs
- 5.3.2. Heterobifunctional molecules: Expanding the post-translational modifiers toolbox
- 6. Summary
- Appendix
- A. List of abbreviations
- B. List of protein ID
- References
- Chapter Three: Automated and enabling technologies for medicinal chemistry
- 1. Introduction
- 2. History of automation in medicinal chemistry
- 2.1. Early synthesis technologies
- 2.2. Development of automated purification techniques
- 2.3. From manual to automated analysis
- 3. The current state of automation and established technologies in medicinal chemistry
- 3.1. Analyse and design-Software tools
- 3.2. Make-Reaction planning tools
- 3.3. Make-Synthesis tools
- 3.4. Make-Work-up tools
- 3.5. Make-Automated purification systems.
- 3.6. Make-Automated analysis techniques
- 4. Automation gaps and emerging technologies
- 4.1. Artificial intelligence and machine learning
- 4.2. Fully automated integrated synthesis platforms
- 4.3. Closed-loop drug discovery
- 4.4. Gaps and outlook for automated technologies in medicinal chemistry
- 5. Medicinal chemists vs machines: What the future holds
- References
- Chapter Four: Use of molecular docking computational tools in drug discovery
- 1. Introduction
- 2. Molecular docking
- 2.1. Theory of docking
- 2.2. Searching algorithm
- 2.2.1. Systematic methods
- 2.2.2. Stochastic methods
- 2.2.3. Scoring functions
- 2.2.3.1. Tailored scoring functions
- 2.3. Practical aspects in molecular docking
- 2.3.1. Protein preparation
- 2.3.1.1. Protonation state
- 2.3.1.2. Binding site definition and cavity detection
- 2.3.1.3. Protein flexibility
- 2.3.1.3.1. Soft docking and side chain rotamer libraries
- 2.3.1.3.2. Ensemble docking
- 2.3.1.4. Structural water molecules
- 2.3.1.4.1. How to recognise active water?
- 2.3.2. Ligand preparation
- 2.4. Small molecule databases
- 2.4.1. ZINC database
- 2.4.2. ENAMINE database
- 2.4.3. NCI open database
- 2.4.4. ChEMBL
- 2.4.5. DrugBank
- 2.4.6. ASINEX database
- 2.4.7. Cambridge structural database (CSD)
- 2.4.8. PubChem
- 3. Fragment-based screening
- 4. Protein-protein docking
- 5. Protein-peptide docking
- 6. Nucleic acid docking
- 7. Current challenges
- 7.1. Blind docking
- 7.2. Covalent docking
- 7.3. Reverse docking
- 8. Looking forward
- References
- Chapter Five: An industrial perspective on co-crystals: Screening, identification and development of the less utilised so ...
- 1. Introduction
- 2. What are co-crystals?
- 2.1. History and discovery
- 2.1.1. Crystal engineering
- 2.1.2. Cinnamic acid example
- 2.2. The salt co-crystal continuum.
- 3. Intellectual property and regulatory perspective on co-crystals
- 4. Generation, characterisation, and development of co-crystals
- 4.1. Designing screens and synthons
- 4.1.1. Supramolecular synthons
- 4.2. Screening by grinding
- 4.2.1. Synthesis of pharmaceutical co-crystals
- 4.2.2. Mechanochemical co-crystal screening
- 4.2.3. Liquid-assisted grinding (LAG)
- 4.2.4. In situ monitoring
- 4.3. Screening by solution methods
- 4.3.1. Evaporative crystallisation
- 4.3.2. Cooling crystallisation
- 4.3.3. Anti-solvent crystallisation
- 4.3.4. Solution-mediated phase transformation (slurry conversion) methods
- 4.4. Characterisation of co-crystals
- 4.4.1. Single crystal X-ray diffraction (SCXRD)
- 4.4.2. Powder X-ray diffraction (XRPD)
- 4.4.3. Solid-state NMR
- 4.4.4. Infrared and Raman spectroscopy
- 4.5. Importance of phase diagrams
- 4.5.1. Binary phase diagrams
- 4.5.2. Ternary phase diagrams
- 4.6. Scaling up of co-crystals
- 4.6.1. Mechanochemistry
- 4.6.2. Twin screw extrusion (TSE)
- 4.6.3. Resonant acoustic mixing (RAM)
- 4.6.4. High shear granulation (HSG)
- 4.6.5. Solution based scale up
- 4.6.6. Solubility
- 4.6.7. Nucleation and seeding
- 4.6.8. Crystal growth
- 4.6.9. Process analytical technologies
- 4.6.10. Case studies
- 4.7. Formulating co-crystals
- 5. Application of co-crystals
- 5.1. Processability
- 5.2. Solubility
- 5.3. Bioavailability
- 5.4. Improving formulation
- 5.5. Permeability
- 5.6. Drug-drug co-crystals
- 5.6.1. Dual action
- 5.6.2. Non-commercial drug-drug co-crystals
- 5.7. Purification and chiral resolution
- 5.7.1. Diastereomeric co-crystals
- 5.7.2. Preferential crystallisation of co-crystals
- 6. Summary and looking forward
- References.