Cargando…

2D materials for nanophotonics /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Jhon, Young Min, Lee, Ju Han
Formato: Electrónico eBook
Idioma:Inglés
Publicado: San Diego, California : Elsevier, 2020.
Colección:Nanophotonics (Elsevier (Firm))
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Front Cover
  • 2D Materials for Nanophotonics
  • Copyright Page
  • Contents
  • List of contributors
  • 1 Synthesis of graphene and other two-dimensional materials
  • 1.1 Introduction
  • 1.2 Synthesis of graphene
  • 1.2.1 Top-down synthesis
  • 1.2.2 Bottom-up synthesis
  • 1.2.3 Structural Raman characterization after the synthesis
  • 1.3 Synthesis of other two-dimensional materials
  • 1.3.1 Micromechanical exfoliation
  • 1.3.2 Ultrasonic exfoliation
  • 1.3.3 Lithium intercalated and exfoliation
  • 1.3.4 Hydro/solvothermal synthesis
  • 1.3.5 Template synthesis
  • 1.3.6 Microwave-assisted method
  • 1.3.7 Topochemical transformation
  • 1.3.8 Pulsed laser deposition
  • 1.3.9 Chemical vapor deposition
  • 1.3.9.1 Chemical vapor deposition growth of two-dimensional transition metal dichalcogenides
  • 1.3.9.2 Chemical vapor deposition growth of graphene
  • 1.3.9.3 Chemical vapor deposition growth of two-dimensional hexagonal boron nitride
  • 1.4 van der Waals heterostructures
  • 1.4.1 Heterostructures by mechanical stacking
  • 1.4.2 Direct synthesis of two-dimensional heterostructures
  • 1.4.2.1 Vertically stacked two-dimensional heterojunctions
  • 1.4.2.2 Laterally stitched two-dimensional heterojunctions
  • 1.4.2.2.1 Lateral semiconductor-semiconductor heterostructures
  • 1.4.2.2.2 Lateral conductor-insulator heterostructures
  • 1.4.2.2.3 Lateral conductor-semiconductor heterostructures
  • 1.5 Conclusion
  • Acknowledgments
  • References
  • 2 Topological insulators and applications
  • 2.1 Introduction
  • 2.1.1 Topological insulators
  • 2.2 Material structures and properties of topological insulators
  • 2.2.1 Theoretical approach to the electronic and optical properties of topological insulators
  • 2.2.1.1 Bi2Se3 and Bi2Te3
  • 2.2.2 The optical property of topological insulators
  • 2.2.2.1 Linear optical properties
  • 2.2.2.1.1 Optical transitions
  • 2.2.2.1.2 Absorption
  • 2.2.2.2 Nonlinear optical properties
  • 2.2.2.2.1 Z-scan measurement
  • 2.2.2.2.2 Ultrafast pump-probe measurement
  • 2.3 Applications
  • 2.3.1 Topological insulator-based SA fabrication methods for laser application
  • 2.3.2 Fiberized saturable absorbers based on bulk-structured Bi2Te3 topological insulators
  • 2.3.2.1 Fabrication and characterization of bulk-structured Bi2Te3 topological insulators
  • 2.3.2.2 Nonlinear transmission curve of the bulk-structured Bi2Te3 topological insulator-based saturable absorbers
  • 2.3.2.3 Passively Q-switched fiber lasers
  • 2.3.2.3.1 Passively Q-switched ytterbium-doped fiber laser
  • 2.3.2.3.2 Passively Q-switched erbium-doped fiber laser
  • 2.3.2.3.3 Passively Q-switched thulium-holmium codoped fiber laser
  • 2.3.2.4 Passively mode-locked fiber lasers
  • 2.3.2.4.1 1�m dissipative soliton fiber laser using bulk-structured Bi2Te3 topological insulator
  • 2.3.2.4.2 1.5�m femtosecond soliton fiber laser using bulk-structured Bi2Te3 topological insulator