Uncertainties in numerical weather prediction /
Uncertainties in Numerical Weather Prediction is a comprehensive work on the most current understandings of uncertainties and predictability in numerical simulations of the atmosphere. It provides general knowledge on all aspects of uncertainties in the weather prediction models in a single, easy to...
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Amsterdam, Netherlands ; Cambridge, MA :
Elsevier,
[2021]
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Intro
- Uncertainties in Numerical Weather Prediction
- Copyright
- Contents
- Contributors
- Preface
- Chapter 1: Dynamical cores for NWP: An uncertain landscape
- 1. Introduction
- 2. Governing equations
- 3. Some physical properties
- 4. Discretizing in time
- 4.1. Some different approaches
- 4.1.1. Single-stage, single-step schemes
- 4.1.2. Single-stage, multistep schemes
- 4.1.3. Multistage single-step schemes
- 4.2. Some numerical properties
- 4.2.1. Single-stage, single-step schemes
- 4.2.2. Single-stage, multistep schemes
- 4.2.3. Multistage single-step schemes
- 5. Discretizing in space
- 5.1. Some different approaches
- 5.1.1. Finite-difference method
- 5.1.2. Finite-volume method
- 5.1.3. Finite-element method
- 5.2. Some numerical properties
- 5.2.1. Finite difference
- 5.2.2. Finite volume
- 5.2.3. Finite element
- 6. (Semi- )Lagrangian approach
- 7. Multidimensional aspects
- 7.1. Extending the discretization to two dimensions
- 7.2. Grids
- 8. An outlook
- Acknowledgments
- References
- Chapter 2: Numerical uncertainties in discretization of the shallow-water equations for weather predication models
- 1. Introduction
- 2. Discretization of the governing equation I
- 2.1. Temporal differential operator
- 2.1.1. Euler and Crank-Nicholson methods
- 2.1.2. Multistep methods
- 2.1.3. Multistage methods
- 2.2. Spatial differential operators
- 2.2.1. Grid staggering and operator discretization
- 2.2.2. Nonzero null space of discrete operators
- 2.3. Extension to two dimensions
- 3. Discretization of the governing equation II
- 3.1. Flux-corrected transport (FCT) schemes
- 3.2. Flux limiter transport schemes
- 3.3. Multidimensional positive definite advection transport algorithm (MPDATA)
- 4. Filtering, damping, and limiting techniques
- 4.1. Horizontal diffusion
- 4.2. Divergence damping (2D)
- 4.3. Smagorinsky horizontal diffusion
- 4.4. Shapiro filters
- 4.5. Polar spectral filtering
- 4.6. Robert-Asselin time filtering
- 4.7. Lax-Wendroff advection method
- 4.8. Shape preserving advection methods
- 5. Global models on unstructured grids
- 5.1. Icosahedral-hexagonal grid
- 5.1.1. MPAS: A community global model
- 5.2. Cubed-sphere grid
- 5.2.1. FV3: NGGPS model at NCEP
- 5.3. Some remarks on unstructured grid
- 6. Summary
- Acknowledgments
- References
- Chapter 3: Probabilistic view of numerical weather prediction and ensemble prediction
- 1. The numerical weather prediction problem
- 1.1. What are the key processes of numerical weather prediction?
- 1.2. An integrated suite of analysis and forecasts
- 1.3. Observations
- 1.4. The model equations
- 1.5. The definition of the initial conditions
- 2. Sources of forecast errors and the chaotic nature of the atmospheric flow
- 3. Ensemble-based probabilistic prediction
- 3.1. How can a forecast PDF be generated?
- 3.2. Ensemble methods: How should one design an ensemble?