Embedded discrete fracture modeling and application in reservoir simulation /
The development of naturally fractured reservoirs, especially shale gas and tight oil reservoirs, exploded in recent years due to advanced drilling and fracturing techniques. However, complex fracture geometries such as irregular fracture networks and non-planar fractures are often generated, especi...
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | , , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
San Diego :
Elsevier,
2020.
|
Colección: | Developments in petroleum science ;
68. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Cover
- Title
- Copyright
- Dedication
- Contents
- Authors biography
- Preface
- Chapter one
- Introduction
- 1.1
- Conventional reservoirs
- 1.2
- Unconventional reservoirs
- 1.3
- Fracture complexity
- 1.4
- Effect of fractures on fluid flow
- 1.5
- Embedded discrete fracture model
- 1.6
- Brief description of chapters
- References
- Chapter two
- Naturally and hydraulically fractured reservoirs
- 2.1 Complex fracture networks in shale
- 2.2 Monitoring and observation of fracture complexity
- 2.3 Distributed acoustic sensing and distributed temperature sensing
- 2.4
- Complex fracture hits
- 2.5 Three fracture classes
- References
- Chapter three
- Numerical approaches for modeling complex fractures
- 3.1
- Dual-continuum models
- 3.2
- Discrete fracture models
- 3.3
- Limitations of unstructured gridding based DFMs
- References
- Chapter four
- Basic EDFM approach using Cartesian grid
- 4.1
- Overview of the embedded discrete fracture model
- 4.2
- Description of EDFM methodology in conventional reservoir simulators using Cartesian grids
- 4.3
- Calculation of NNC transmissibility factors and fracture well indices
- 4.3.1
- Basic flux formulations
- 4.3.2
- Matrix-fracture intersection
- 4.3.3
- Connection between fracture segments within an individual fracture
- 4.3.4
- Fracture intersection
- 4.3.5
- Fracture-well intersection
- 4.3.6
- Fracture pore-volume cutoff
- 4.3.7
- Derivation of matrix-fracture transmissibility factor
- 4.4
- Modeling complex fracture geometries
- 4.4.1
- Nonplanar fracture geometry
- 4.4.2
- Varying fracture width
- 4.4.3
- Special handling of small fracture segments
- 4.5
- Model verifications
- 4.5.1
- Case 1: Bi-wing fractures
- 4.5.2
- Case 2: Complex orthogonal fractures
- 4.5.3
- Case 3: Non-orthogonal fractures
- 4.5.4
- Case 4: Nonplanar fractures
- 4.5.5
- Case 5: Complex nonplanar fractures with variable width
- 4.5.6
- Computational efficiency comparison
- 4.6
- Model application
- 4.6.1
- Case 6: Shale gas production in a naturally fractured reservoir
- 4.6.2
- Case 7: Three-dimensional, three-phase, multi-component simulation
- 4.7
- Remarks
- Nomenclature
- References
- Chapter five
- An extension of the embedded discrete fracture model for modeling dynamic behaviors of complex fractures
- 5.1
- Introduction
- 5.2
- Methodology
- 5.2.1
- Half-transmissibility form of the EDFM formulations
- 5.2.2
- Modeling matrix- and fracture-permeability change during simulation
- 5.2.3
- Modeling of fracture shear failure
- 5.3
- Model verification and field application
- 5.3.1
- Case 1: Horizontal well with transverse planar hydraulic fractures in the Eagle Ford Shale
- 5.3.2
- Case 2: History matching of an Eagle Ford shale-oil well
- 5.4
- Case studies with complex fractures
- 5.4.1
- Case 3: Vertical well refracturing in tight gas reservoir
- 5.4.2
- Case 4: Horizontal well refracturing with nonplanar fractures