|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
SCIDIR_on1157908905 |
003 |
OCoLC |
005 |
20231120010456.0 |
006 |
m o d |
007 |
cr cnu---unuuu |
008 |
200613s2020 ne a ob 001 0 eng d |
040 |
|
|
|a YDX
|b eng
|e rda
|e pn
|c YDX
|d OPELS
|d OCLCF
|d YDXIT
|d UKMGB
|d UKAHL
|d EBLCP
|d OCLCO
|d N$T
|d OCLCO
|d OCLCQ
|d K6U
|d OCLCQ
|
015 |
|
|
|a GBC072169
|2 bnb
|
016 |
7 |
|
|a 019811052
|2 Uk
|
019 |
|
|
|a 1158221608
|a 1159407928
|
020 |
|
|
|a 012817837X
|q (electronic book)
|
020 |
|
|
|a 9780128178379
|q (electronic bk.)
|
020 |
|
|
|z 9780128178362
|
020 |
|
|
|z 0128178361
|
035 |
|
|
|a (OCoLC)1157908905
|z (OCoLC)1158221608
|z (OCoLC)1159407928
|
050 |
|
4 |
|a QD716.P45
|b N36 2020
|
082 |
0 |
4 |
|a 541/.395
|2 23
|
245 |
0 |
0 |
|a Nanostructured photocatalysts :
|b from materials to applications in solar fuels and environmental remediation /
|c edited by Rabah Boukherroub, Satishchandra B. Ogale, Neil Robertson.
|
264 |
|
1 |
|a Amsterdam ;
|a Cambridge, MA :
|b Elsevier,
|c [2020]
|
300 |
|
|
|a 1 online resource (xv, 283 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Micro & nano technologies series
|
504 |
|
|
|a Includes bibliographical references and index.
|
588 |
0 |
|
|a Online resource; title from digital title page (viewed on July 29, 2020).
|
505 |
0 |
|
|a Front Cover -- Nanostructured Photocatalysts -- Copyright Page -- Contents -- List of contributors -- Foreword -- 1 Design of efficient photocatalysts through band gap engineering -- 1.1 Introduction -- 1.1.1 Photocatalysis -- 1.1.2 Band structure -- 1.2 Band engineering -- 1.2.1 Anionic doping -- 1.2.2 Cationic doping -- 1.2.3 Solid solutions -- 1.3 Concluding remarks -- References -- 2 Photochemical synthesis of nanoscale multicomponent metal species and their application to photocatalytic and electrochem ... -- 2.1 Introduction -- 2.2 Hydrogen evolution reaction cocatalysts
|
505 |
8 |
|
|a 2.3 Oxygen evolution reaction cocatalysts -- 2.4 Summary and outlook -- References -- 3 Development of photocatalysts and system optimization for CO2 photoreduction -- 3.1 Photocatalytic reduction of CO2 -- 3.1.1 Introduction -- 3.1.2 Principles of CO2 photoreduction -- 3.1.3 Modeling of CO2 photocatalytic reduction reactions -- 3.2 Titania-based photocatalyst for CO2 photoreduction -- 3.2.1 Introduction -- 3.2.1.1 Properties and structure of TiO2 -- 3.2.2 Modification of TiO2-based photocatalyst -- 3.2.2.1 Doping -- 3.2.2.1.1 Metal doping -- 3.2.2.1.2 Nonmetal doping -- 3.2.2.2 Metal loading
|
505 |
8 |
|
|a 3.2.2.3 Nanostructuring of TiO2 -- 3.3 Nontitania-based inorganic photocatalysts for CO2 photoreduction -- 3.3.1 Nanostructured inorganic photocatalysts -- 3.3.1.1 Sulfides -- 3.3.1.2 Oxides -- 3.3.1.3 Oxynitrides -- 3.3.1.4 Nitrides -- 3.3.2 Nanostructured carbon-based photocatalysts -- 3.4 Hole scavenger for CO2 photoreduction -- 3.4.1 Introduction -- 3.4.2 Inorganic hole scavenger -- 3.4.3 Organic hole scavenger -- 3.5 CO2 photoreduction process development and data collection -- 3.5.1 Introduction -- 3.5.2 Experimental and analytical examples -- 3.5.3 CO2 photoreduction process parameters
|
505 |
8 |
|
|a 3.5.4 Kinetic modeling and systematic tools for CO2 photoreduction -- 3.5.5 CO2 photoreduction product verification -- 3.5.6 Summary -- Acknowledgement -- References -- 4 Heterogeneous photocatalysis for water purification -- 4.1 Introduction -- 4.2 Oxidation mechanism -- 4.3 Factors affecting heterogeneous photocatalysis -- 4.3.1 Temperature -- 4.3.2 Water matrix -- 4.3.3 Catalyst concentration -- 4.3.4 Light wavelength and intensity -- 4.3.5 Initial concentration of the substrate -- 4.3.6 pH -- 4.4 Water purification applications -- 4.4.1 Organic pollutants -- 4.4.2 Biological contaminants
|
505 |
8 |
|
|a 4.5 Process sustainability -- 4.5.1 Irradiation sources -- 4.5.2 Life cycle assessment of heterogeneous photocatalysis -- 4.6 Conclusions and reflections on the directions for future research -- References -- 5 Air purification applications using photocatalysis -- 5.1 Introduction -- 5.2 Photocatalysis for outdoor and indoor air -- 5.3 Operating with solar radiation -- 5.3.1 NOX control -- 5.3.2 Ozone -- 5.3.3 Self-cleaning properties -- 5.4 Operating with artificial light -- 5.5 Current standards for evaluation of materials -- 5.6 Working with sunlight in outdoor and indoor air
|
650 |
|
0 |
|a Photocatalysis.
|
650 |
|
0 |
|a Nanostructured materials.
|
650 |
|
2 |
|a Nanostructures
|0 (DNLM)D049329
|
650 |
|
6 |
|a Photocatalyse.
|0 (CaQQLa)201-0247110
|
650 |
|
6 |
|a Nanomat�eriaux.
|0 (CaQQLa)201-0258061
|
650 |
|
7 |
|a Nanostructured materials.
|2 fast
|0 (OCoLC)fst01032630
|
650 |
|
7 |
|a Photocatalysis.
|2 fast
|0 (OCoLC)fst01061500
|
700 |
1 |
|
|a Boukherroub, Rabah,
|e editor.
|
700 |
1 |
|
|a Ogale, Satishchandra B.,
|e editor.
|
700 |
1 |
|
|a Robertson, N.
|q (Neil),
|e editor.
|
776 |
0 |
8 |
|i Print version:
|z 0128178361
|z 9780128178362
|w (OCoLC)1130251645
|
830 |
|
0 |
|a Micro & nano technologies.
|
856 |
4 |
0 |
|u https://sciencedirect.uam.elogim.com/science/book/9780128178362
|z Texto completo
|