Nonlinear differential equations in micro/nano mechanics : application in micro/nano structures and electromechanical systems /
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Otros Autores: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Amsterdam :
Elsevier,
2020.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Front Cover
- Nonlinear Differential Equations in Micro/nano Mechanics
- Copyright
- Contents
- Preface
- Acknowledgments
- 1 Differential equations in miniature structures
- 1.1 Introduction to miniature structures
- 1.2 Physics of small-scale structures
- 1.2.1 Electrostatic actuation
- 1.2.2 Pull-in instability
- 1.2.3 Dispersion forces
- 1.2.4 Size dependency
- 1.2.5 Surface effects
- 1.2.6 Damping in NEMS/MEMS
- 1.2.6.1 Drag force
- 1.2.6.2 Squeezed lm damping
- 1.2.6.3 Slide lm damping
- 1.3 Modeling of small-scale structures
- 1.3.1 Lumped parameter model
- 1.3.2 Micro/nanoscale continuum mechanics
- 1.3.2.1 Strain-displacement relations
- 1.3.2.2 Constitutive equation
- 1.4 Conclusion
- References
- 2 Semianalytical solution methods
- 2.1 Introduction
- 2.2 Homotopy perturbation method
- 2.2.1 Cantilever nanoactuator in van der Waals regime
- 2.3 Adomian decomposition methods
- 2.3.1 Conventional Adomian decomposition method
- 2.3.1.1 Nanoswitch in Casimir regime
- 2.3.2 Modi ed Adomian decomposition method
- 2.3.2.1 Size-dependent behavior of the NEMS with elastic boundary condition
- 2.3.3 Comparison between the conventional and modi ed Adomian decomposition methods
- 2.4 Green's function methods
- 2.4.1 General Green's function
- 2.4.1.1 Carbon-nanotube actuator close to graphite sheets
- 2.4.2 Monotonic iteration method
- 2.4.2.1 Size-dependent behavior of the nanowire manufactured nanoswitch
- 2.5 Differential transformation method
- 2.5.1 Size-dependent instability of a double-sided nanobridge
- 2.6 Variation iteration methods
- 2.6.1 Nanowire manufactured nanotweezers
- 2.7 Galerkin method for static problems
- 2.7.1 Circular micromembrane subjected to hydrostatic pressure and electrostatic force
- 2.8 Conclusion
- References
- 3 Numerical solution methods
- 3.1 Introduction
- 3.2 Generalized differential quadrature method
- 3.2.1 Impact of size and surface energies on the performance of nanotweezers
- 3.2.2 U-shaped nanosensor
- 3.3 Finite difference method
- 3.3.1 Nanoactuator in ionic liquid media
- 3.3.2 Paddle-type nanosensor
- 3.4 Finite element method
- 3.4.1 Double-sided nanobridge in Casimir regime
- 3.4.2 Parallel-plates microcapacitor
- 3.5 Conclusion
- References
- 4 Dynamic and time-dependent equations
- 4.1 Introduction
- 4.2 Reduced-order approaches
- 4.2.1 Galerkin method for dynamic problems
- 4.2.1.1 Dynamic analysis of narrow nanoactuators
- 4.2.1.2 Dynamic analysis of narrow nanoactuators with AC actuation
- 4.2.2 Rayleigh-Ritz method
- 4.2.2.1 Dynamic analysis of nanowire-based sensor in the accelerating eld
- 4.3 Runge-Kutta method
- 4.3.1 Dynamic behavior of rotational nanomirror
- 4.3.2 Torsion/bending dynamic analysis of a circular nanoscanner
- 4.4 Homotopy perturbation method for time-dependent differential equations