Cargando…

Additive and traditionally manufactured components : a comparative analysis of mechanical properties /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Pelleg, Joshua (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam : Elsevier, 2020.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Intro
  • Additive and Traditionally Manufactured Components: A Comparative Analysis of Mechanical Properties
  • Copyright
  • Dedication
  • Contents
  • Preface
  • About the author
  • Chapter One: What is additive manufacturing?
  • Chapter Two: Fabrication
  • 2.1. Fused deposition method (FDM)
  • 2.1.1. Melt properties
  • 2.1.2. Liquefier
  • 2.1.3. Heat convection
  • 2.1.4. Pressure drop estimation
  • 2.1.5. Layer deposition and stability
  • 2.1.6. Road spreading
  • 2.1.7. Road cooling and polymer bonding
  • 2.2. Powder-bed fusion (PBF)
  • 2.3. Inkjet printing
  • 2.4. Stereolithography (SLA)
  • 2.4.1. The state of the resin (photopolymer)
  • 2.4.2. The maximum cure depth
  • 2.4.3. The cured line width
  • 2.4.4. Laser scan velocity
  • 2.5. Direct energy deposition (DED)
  • 2.5.1. Thermal model
  • 2.6. Laminated object manufacturing (LOM)
  • References
  • Further reading
  • Chapter Three: Testing: Comparison of AM data with traditionally fabricated
  • 3.1. Tensile tests
  • 3.1.1. Ti-6Al-4V: AM tensile properties
  • 3.1.2. Al alloy AA6061: AM tensile properties
  • 3.1.2.1. Conventionally produced (AM) AA6061
  • 3.1.3. Stainless steel 304L: AM tensile properties
  • 3.1.3.1. Conventionally produced SS 304L
  • 3.1.4. Ceramic
  • 3.1.4.1. AM alumina
  • 3.1.4.2. Conventionally fabricated alumina
  • 3.2. Compression tests
  • 3.2.1. Ti-6Al-4V
  • 3.2.2. Conventionally fabricated Ti-6Al-4V
  • 3.2.3. Al alloys-Al 60613
  • 3.2.4. Conventionally fabricated Al 6061
  • 3.2.5. AM stainless steel 304L
  • 3.2.5.1. Conventionally fabricated stainless steel 304L
  • 3.2.6. Ceramics-Alumina
  • 3.2.7. Conventionally fabricated alumina (Al2O3)
  • 3.2.7.1. Effect of orientation and temperature
  • 3.3. Indentation (hardness)
  • 3.3.1. Ti-6Al-4V
  • 3.3.1.1. Conventionally produced Ti-6Al-4V
  • 3.3.2. Aluminum alloy (Al6061)
  • 3.3.3. Conventionally fabricated Al 6061
  • 3.3.4. Stainless steel 304L
  • 3.3.4.1. Conventionally produced 304L stainless steel
  • 3.3.5. Alumina
  • 3.3.6. Conventionally produced alumina
  • 3.3.6.1. Temperature dependence
  • 3.3.6.2. Hardness of coatings
  • 3.3.6.3. Hardness of alumina films
  • References
  • Further reading
  • Chapter Four: Dislocations in AM and traditional manufacturing: A comparison
  • 4.1. Introduction
  • 4.1.1. In AM Ti-6Al-4V
  • 4.1.2. In traditionally fabricated Ti-6Al-4V
  • 4.1.3. Motion of dislocations
  • 4.2. Introduction AA6061
  • 4.2.1. AM of AA6061 Al alloy
  • 4.2.2. Dislocations in conventionally produced Al AA6061
  • 4.2.2.1. Pinning of dislocations in 6061
  • 4.2.2.2. The strain effect in 6061
  • 4.3. In stainless steel 304L
  • 4.3.1. Introduction
  • 4.3.2. In AM 304L stainless steel
  • 4.3.3. In conventionally fabricated 304L stainless steel
  • 4.4. In alumina (Al2O3)
  • 4.4.1. In conventionally fabricated alumina
  • References
  • Further reading
  • Chapter Five: Deformation in AM and traditional manufacturing: A comparison
  • 5.1. Introduction
  • 5.1.1. Deformation in AM Ti-6Al-4V
  • 5.1.2. In traditionally fabricated Ti-6Al-4V
  • 5.1.2.1. Tensile deformation
  • 5.1.2.2. Compressive deformation
  • 5.2. Deformation in AM Al AA6061
  • 5.2.1. Tensile deformation in Al AA6061
  • 5.2.2. Compressive deformation
  • 5.2.3. Conventional tensile deformation
  • 5.2.4. Conventional compressive deformation
  • 5.3. AM stainless steel 304L
  • 5.3.1. Tensile deformation
  • 5.3.2. Compression deformation
  • 5.3.3. Conventionally produced SS 304L
  • 5.3.3.1. Tensile deformation in conventionally produced SS 304L
  • 5.3.3.2. Compressive deformation in conventionally produced SS 304L
  • 5.4. Deformation in alumina
  • 5.4.1. Compressive deformation of AM alumina
  • 5.4.2. Hardness
  • 6.1. Introduction
  • 6.2. Dynamic deformation of AM Ti-6Al-4V
  • 6.2.1. Tensile test of AM Ti-6Al-4V
  • 6.2.2. Tensile test of CP Ti-6Al-4V
  • 6.3. Compression tests
  • 6.3.1. In AM Ti-6Al-4V
  • 6.3.2. In CP Ti-6Al-4V
  • 6.3.3. Twinning in Ti-6Al-4V
  • 6.4. Dynamic deformation in Al AA6061
  • 6.4.1. Tension test in AM AlSi10Mg
  • 6.4.2. Compression test in AM Al Si10Mg
  • 6.4.3. Tensile test in CP AA6061
  • 6.4.4. Compression test in CP Al 6061
  • 6.4.5. Tensile test in AM SS 304L
  • 6.4.6. Compression test in AM SS 304L
  • 6.4.7. Tensile test in CP 304L SS
  • 6.4.8. Compression test in CP 304L SS
  • 6.5. Dynamic deformation in alumina (Al2O3)
  • 6.5.1. Tension test in AM alumina
  • 6.5.2. Compression test in AM alumina
  • 6.5.3. Hardness in AM alumina
  • 6.5.4. Tensile test in CP alumina (Al2O3)
  • 6.5.5. Compression test in CP alumina (Al2O3)
  • 7.1. Introduction
  • 7.2. Tensile creep in AM Ti6Al4V
  • 7.3. Compressive creep in AM Ti6Al4V
  • 7.4. Tensile creep in CP Ti6Al4V
  • 7.5. Compressive creep in CP Ti6Al4V
  • 7.6. Tensile creep in AM Al10SiMg
  • 7.7. Tensile creep in CP Al AA6061
  • 7.8. Compressive creep in CP Al AA6061
  • 8.1. Introduction to fatigue
  • 8.2. Fatigue in AM Ti6Al4V
  • 8.2.1. High cycle fatigue
  • 8.2.2. Low cycle fatigue
  • 8.2.3. Rough surface and notch effect
  • 8.3. Fatigue in conventionally fabricated Ti6Al4V
  • 8.3.1. High cycle fatigue
  • 8.3.2. Low cycle fatigue
  • 8.3.3. Rough surface and notch effect
  • 8.4. Fatigue in conventionally fabricated Al AA6061
  • 8.4.1. High cycle fatigue in Al 6061
  • 8.4.2. Low cycle fatigue
  • 8.5. The Massing hypothesis
  • 8.5.1. Rough surface and notch effect
  • 8.6. Fatigue in AM SS 304L
  • 8.6.1. Hgh cycle fatigue
  • 8.6.2. Fatigue in CP SS 304L
  • 8.6.2.1. High cycle fatigue
  • 9.1. Fracture in AM Ti-6Al-4V
  • 9.2. Fracture in AM Al AA6061
  • 9.3. Fracture in AM SS 316L
  • 9.4. Fracture in AM alumina
  • 9.5. Fracture in CP Ti-6Al-4V
  • 9.6. Fracture in CP Al AA6061
  • 9.7. Fracture in CP SS 304L
  • 9.7.1. Strain rate effects in CP SS 304L
  • 9.7.2. Hydrogen effects in CP SS 304L--Hydrogen embrittlement
  • 9.7.2.1. Introduction
  • 9.8. Fracture in CP alumina
  • 10.1. Tensile properties
  • 10.1.1. AM Ti6Al4V
  • 10.1.2. CP Ti6Al4V
  • 10.1.3. AM of nano-316L SS
  • 10.1.4. CP nano-316L SS
  • 10.1.4.1. CP nano-316L and 304L SS
  • 10.1.4.2. CP nano-304L SS
  • 10.2. Compressive properties
  • 10.2.1. AM of nano-alumina
  • 10.2.2. CP of nano-alumina
  • 10.3. Indentation hardness in nanomaterials
  • 10.3.1. Introduction
  • 10.3.2. Hardness in AM nano-alumina
  • 10.3.3. Hardness in CP nano-alumina
  • Chapter Eleven
  • Epilogue
  • Index.