Diabetes and fundus OCT /
Call Number: | Libro Electrónico |
---|---|
Other Authors: | , |
Format: | Electronic eBook |
Language: | Inglés |
Published: |
Amsterdam :
Elsevier,
2020.
|
Series: | Computer-assisted diagnosis ;
v. 1 |
Subjects: | |
Online Access: | Texto completo |
Table of Contents:
- Intro
- Diabetes and Fundus OCT
- Copyright
- Contents
- Contributors
- Chapter 1: Computer-aided diagnosis system based on a comprehensive local features analysis for early diabetic retinopath ...
- 1. Introduction
- 2. Materials and methods
- 2.1. Contrast enhancement and noise elimination
- 2.2. Vessel segmentation
- 2.3. Local feature extraction and diagnosis
- 2.3.1. Blood vessel density estimation
- 2.3.2. Retinal blood vessel caliber
- 2.3.3. Width of the FAZ
- 2.3.4. Bifurcation points
- 2.4. Mild DR diagnosis
- 3. Experimental results
- 4. Conclusions
- References
- Chapter 2: Deep learning approach for classification of eye diseases based on color fundus images
- 1. Introduction
- 2. Deep learning
- 2.1. Convolutional neural network
- 3. Fundus imaging
- 3.1. Image acquisition
- 3.2. Main vascular abnormalities
- 3.2.1. Tortuosity
- 3.2.2. Generalized arteriolar narrowing
- 3.2.3. Focal arteriolar narrowing
- 3.2.4. Bifurcations abnormalities
- 3.2.5. Crossing abnormalities
- 3.3. Main nonvascular
- 3.3.1. Microaneurysms and red dots
- 3.3.2. Hemorrhages
- 3.3.3. Hard exudates
- 3.3.4. Cotton wool spots
- 3.4. Hypertensive retinopathy
- 3.5. Diabetic retinopathy
- 4. Research method
- 4.1. Research framework
- 4.2. Dataset
- 4.3. Preprocessing
- 4.4. Classifier configuration
- 4.5. Model training and cross validation
- 4.6. Experiment result
- 4.7. Conclusion
- References
- Further reading
- Chapter 3: Fundus retinal image analyses for screening and diagnosing diabetic retinopathy, macular edema, and glaucoma d ...
- 1. Introduction
- 2. A brief history of fundus retinal imaging
- 3. Public retinal image databases
- 4. Automatic retinal image analysis
- 4.1. Performance metrics used in ARIA
- 4.2. Retinal vessel segmentation
- 4.3. Optic disc (or ONH), macula and fovea: Detection and segmentation
- 5. Macular edema and DR classification using fundus image
- 5.1. Detection of microaneurysms and hemorrhage
- 5.2. Detection of exudates
- 5.3. Automatic classification of DR and DME severity levels
- 6. Glaucoma classification using ARIA
- 7. Future trends in fundus retinal imaging
- 8. Conclusion
- References
- Chapter 4: Mobile phone-based diabetic retinopathy detection system
- 1. Introduction
- 1.1. Causes of diabetic retinopathy
- 1.2. Types of diabetic retinopathy
- 2. Related works
- 3. Proposed system
- 3.1. Artificial neural networks
- 3.2. Discrete wavelet transform
- 3.3. Smartphone as an ophthalmoscope
- 3.4. Software requirement and description
- 3.5. Algorithm and flow chart
- 4. Experimental results
- 5. Conclusion
- References
- Chapter 5: Computer-aided diagnosis of age-related macular degeneration by OCT, fundus image analysis
- 1. Introduction
- 1.1. Risk factors
- 1.2. Symptoms of macular degeneration
- 1.2.1. Macular degeneration diagnosis, treatment, and prevention
- 1.3. Diagnosis
- 1.4. AMD treatment