Cargando…

Semi-Empirical Neural Network Modeling and Digital Twins Development /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Tarkhov, Dmitriy
Otros Autores: Lazovskaya, T. V., Vasilyev, A. N., Nikolayevich Vasilyev, Alexander
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London, U.K. ; San Diego, Calif. : Academc Press, an imprint of Elsevier, [2020]
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 SCIDIR_on1129221265
003 OCoLC
005 20231120010428.0
006 m o d
007 cr un|---aucuu
008 191130s2019 cau ob 001 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d UKMGB  |d OCLCO  |d OPELS  |d OCLCF  |d N$T  |d CDN  |d UKAHL  |d OCLCQ  |d OCLCO  |d K6U  |d OCLCQ  |d OCLCO 
015 |a GBB9H1884  |2 bnb 
016 7 |a 019576785  |2 Uk 
020 |a 012815652X 
020 |a 9780128156520  |q (electronic bk.) 
020 |z 9780128156513  |q (pbk.) 
035 |a (OCoLC)1129221265 
050 4 |a QA76.87 
050 4 |a QA76.87  |b .T37 2020eb 
082 0 4 |a 006.32  |2 23 
100 1 |a Tarkhov, Dmitriy. 
245 1 0 |a Semi-Empirical Neural Network Modeling and Digital Twins Development /  |c Dmitriy Tarkhov, Alexander Vasilyev. 
264 1 |a London, U.K. ;  |a San Diego, Calif. :  |b Academc Press, an imprint of Elsevier,  |c [2020] 
264 4 |c �2020 
300 |a 1 online resource (xlvii, 240 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Print version record. 
505 0 |a Front Cover; Semi-empirical Neural Network Modeling and Digital Twins Development; Copyright; Contents; About the authors; Preface; Acknowledgments; Introduction; References; Chapter 1: Examples of problem statements and functionals; 1.1. Problems for ordinary differential equations; 1.1.1. A stiff differential equation; 1.1.2. The problem of a chemical reactor; 1.1.3. The problem of a porous catalyst; 1.1.4. Differential-algebraic problem; 1.2. Problems for partial differential equations for domains with fixed boundaries; 1.2.1. The Laplace equation on the plane and in space 
505 8 |a 1.2.2. The Poisson problem1.2.3. The Schr�odinger equation with a piecewise potential (quantum dot); 1.2.4. The nonlinear Schr�odinger equation; 1.2.5. Heat transfer in the vessel-tissue system; 1.3. Problems for partial differential equations in the case of the domain with variable borders; 1.3.1. Stefan problem; Problem formulation; 1.3.2. The problem of the alternating pressure calibrator; Problem statement; 1.4. Inverse and other ill-posed problems; 1.4.1. The inverse problem of migration flow modeling 
505 8 |a 1.4.2. The problem of the recovery of solutions on the measurements for the Laplace equation1.4.3. The problem for the equation of thermal conductivity with time reversal; 1.4.4. The problem of determining the boundary condition; 1.4.5. The problem of continuation of the temperature field according to the measurement data; 1.4.6. Construction of a neural network model of a temperature field according to experimental data in the case of an int ... ; 1.4.7. The problem of air pollution in the tunnel; The conclusion; References; Further reading 
505 8 |a Chapter 2: The choice of the functional basis (set of bases)2.1. Multilayer perceptron; 2.1.1. Structure and activation functions of multilayer perceptron; 2.1.2. The determination of the initial values of the weights of the perceptron; 2.2. Networks with radial basis functions-RBF; 2.2.1. The architecture of RBF networks; 2.2.2. Radial basis functions; 2.2.3. Asymmetric RBF-networks; 2.3. Multilayer perceptron and RBF-networks with time delays; References; Chapter 3: Methods for the selection of parameters and structure of the neural network model; 3.1. Structural algorithms 
505 8 |a 3.1.1. Methods for specific tasks3.2. Methods of global non-linear optimization; 3.3. Methods in the generalized definition; 3.4. Methods of refinement of models of objects described by differential equations; References; Further reading; Chapter 4: Results of computational experiments; 4.1. Solving problems for ordinary differential equations; 4.1.1. Stiff form of differential equation; 4.1.2. Chemical reactor problem; 4.1.3. The problem of a porous catalyst; 4.1.4. Differential-algebraic problem; 4.2. Solving problems for partial differential equations in domains with constant boundaries 
500 |a 4.2.1. Solution of the Dirichlet problem for the Laplace equation in the unit circle 
504 |a Includes bibliographical references and index. 
650 0 |a Neural networks (Computer science) 
650 0 |a Finite element method  |x Data processing. 
650 2 |a Neural Networks, Computer  |0 (DNLM)D016571 
650 6 |a R�eseaux neuronaux (Informatique)  |0 (CaQQLa)201-0209597 
650 7 |a Finite element method  |x Data processing  |2 fast  |0 (OCoLC)fst00924900 
650 7 |a Neural networks (Computer science)  |2 fast  |0 (OCoLC)fst01036260 
700 1 |a Lazovskaya, T. V. 
700 1 |a Vasilyev, A. N. 
700 1 |a Nikolayevich Vasilyev, Alexander. 
776 0 8 |i Print version:  |a Tarkhov, Dmitriy.  |t Semi-Empirical Neural Network Modeling and Digital Twins Development.  |d San Diego : Elsevier Science & Technology, �2019  |z 9780128156513 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780128156513  |z Texto completo