Cargando…

Neural network modeling and identification of dynamical systems /

A new approach on how to obtain the adaptive neural network models for complex systems that are typically found in real-world applications. The book introduces the theoretical knowledge available for the modeled system into the purely empirical black box model, thereby converting the model to the gr...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Tiumentsev, Yury V. (Autor), Egorchev, Mikhail (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London : Academic Press, [2019]
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 SCIDIR_on1102592819
003 OCoLC
005 20231120010354.0
006 m o d
007 cr cnu|||unuuu
008 190528t20192019enk o 001 0 eng d
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d N$T  |d EBLCP  |d OPELS  |d OCLCF  |d YDXIT  |d UKAHL  |d OCLCQ  |d K6U  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO 
020 |a 9780128154304  |q (electronic bk.) 
020 |a 0128154306  |q (electronic bk.) 
020 |z 9780128152546  |q (paperback) 
020 |z 0128152540  |q (paperback) 
035 |a (OCoLC)1102592819 
050 4 |a QA76.87 
072 7 |a COM  |x 000000  |2 bisacsh 
082 0 4 |a 006.32  |2 23 
100 1 |a Tiumentsev, Yury V.,  |e author. 
245 1 0 |a Neural network modeling and identification of dynamical systems /  |c Yury V. Tiumentsev, Mikhail V. Egorchev. 
264 1 |a London :  |b Academic Press,  |c [2019] 
264 4 |c �2019 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
500 |a Includes index. 
520 |a A new approach on how to obtain the adaptive neural network models for complex systems that are typically found in real-world applications. The book introduces the theoretical knowledge available for the modeled system into the purely empirical black box model, thereby converting the model to the gray box category. This approach significantly reduces the dimension of the resulting model and the required size of the training set. This book offers solutions for identifying controlled dynamical systems, as well as identifying characteristics of such systems, in particular, the aerodynamic characteristics of aircraft. Covers both types of dynamic neural networks (black box and gray box) including their structure, synthesis and trainingOffers application examples of dynamic neural network technologies, primarily related to aircraftProvides an overview of recent achievements and future needs in this area 
588 0 |a Online resource; title from PDF title page (EBSCO, viewed May 29, 2019). 
650 0 |a Neural networks (Computer science) 
650 2 |a Neural Networks, Computer  |0 (DNLM)D016571 
650 6 |a R�eseaux neuronaux (Informatique)  |0 (CaQQLa)201-0209597 
650 7 |a COMPUTERS  |x General.  |2 bisacsh 
650 7 |a Neural networks (Computer science)  |2 fast  |0 (OCoLC)fst01036260 
700 1 |a Egorchev, Mikhail,  |e author. 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780128152546  |z Texto completo