Cargando…

Radiation : fundamentals, applications, risks, and safety /

The author is ready to assert that practically none of the readers of this book will ever happen to deal with large doses of radiation. But the author, without a shadow of a doubt, claims that any readers of this book, regardless of gender, age, financial situation, type of professional activity, an...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Obodovskiy, Ilya (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam, Netherlands : Elsevier, [2019]
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Front Cover; Radiation; Radiation; Copyright; Dedication; Contents (short); Contents; Introduction; REFERENCES; I
  • Fundamentals; 1
  • Peculiarities of the Processes in Microcosm; 1.1 QUANTUM LAWS; 1.2 BOHR'S ATOM MODEL; 1.3 STRUCTURE OF ELECTRON LEVELS OF AN ATOM; 1.3.1 Electron Shells and Subshells; 1.3.2 Filling of Shells (Construction of Mendeleev's Table); 1.3.3 Splitting of Shells Into Subshells; 1.3.4 Transitions Between Levels; 1.4 CONSTITUTION AND ELECTRON STRUCTURE OF MOLECULES; 1.4.1 Repulsive Forces; 1.4.2 Types of Bonds; 1.4.3 Electronegativity; 1.4.4 Ionic Bond
  • 1.4.5 Covalent Bond1.4.6 Donor-Acceptor Type of Bond; 1.4.7 Types of Molecular Movement; 1.4.8 Molecule Vibration. Classical and Quantum Harmonic Oscillator; 1.4.9 Configuration Curves: Frank-Condon Principle; 1.4.10 Molecular Orbitals; 1.4.10.1 Sigma, Pi, and Delta Bonds; 1.4.10.2 Examples of the Formation of Molecular Orbitals in Diatomic Molecules; 1.4.11 The Main Peculiarities of the Covalent Bond; 1.4.12 Electric Dipole Moment of a Molecule; 1.4.13 Molecule Polarizability; 1.4.14 Bond Energy, Bond Length, Atomic Radii; 1.4.15 Geometry of Covalent Molecules, Bond Angles
  • 1.4.16 Hybridization of Atomic Orbitals1.5 INTERMOLECULAR INTERACTION; 1.5.1 General Characteristic; 1.5.2 Interaction of Two Constant Dipoles (Orientation Interaction); 1.5.3 Interaction of a Constant Dipole With an Induced Dipole (Induction Interaction); 1.5.4 Interaction of Two Induced Dipoles (Dispersion Interaction); 1.5.5 Hydrogen Bond; 1.6 QUANTUM LAWS AND A LIVING CELL; 1.6.1 Quantum Biochemistry₂Quantum Biology; 1.6.2 Some Conceptions of Quantum World; 1.6.2.1 Quantum Superposition; 1.6.2.2 Coherence; 1.6.2.3 Quantum Entanglement and Nonlocality; 1.6.2.4 Tunneling
  • 1.6.3 Nontrivial Quantum Effects in Biology1.6.3.1 Photosynthesis; 1.6.3.2 Magnetoreception; 1.6.3.3 Sense of Odor; 1.6.3.4 Fermentative Catalysis; 1.6.3.5 The Role of Quantum Effects in Origin and Evolution of Life; 1.6.3.6 Some Other Biological Effects That Demand Attraction of Quantum Effects; REFERENCES; 2
  • Nuclei and Nuclear Radiations; 2.1 CONSTITUTION OF NUCLEUS; 2.2 MASS OF A NUCLEUS, BINDING ENERGY; 2.3 NUCLEAR SIZE; 2.4 NUCLEAR MOMENTS; 2.4.1 Nuclear Mechanical Moments (Angular Moment and Spin); 2.4.2 The Nuclear Electrical Moments; 2.4.3 Magnetic Moment of a Nucleus
  • 2.5 NUCLEAR PARITY2.6 ENERGY LEVELS OF NUCLEI. EXCITED STATES; 2.7 RADIOACTIVE DECAY AND RADIOACTIVE RADIATIONS; 2.7.1 Alpha Decay; 2.7.2 Beta Decay; 2.7.3 Gamma Radiation of Nuclei; 2.7.4 Isomers; 2.7.5 Internal Conversion; 2.7.6 Energy Diagram of Radioactive Decay; 2.8 THE RADIOACTIVE DECAY LAW; 2.9 THE RADIOACTIVE CHAINS; 2.10 X-RAYS AND SYNCHROTRON RADIATION; 2.10.1 Characteristic X-Ray; 2.10.2 Bremsstrahlung; 2.10.3 Synchrotron Radiation; 2.11 SOME ELEMENTS OF DOSIMETRY; 2.11.1 Doses and Dose Rates; 2.11.2 Microdosimetry and Nanodosimetry; REFERENCES
  • 3
  • Probability and Energy Laws of Particle Collisions