Cargando…

Fundamentals and Applications of Nano Silicon in Plasmonics and Fullerines : Current and Future Trends /

"Fundamentals and Applications of Nano Silicon in Plasmonics and Fullerines: Current and Future Trends addresses current and future trends in the application and commercialization of nanosilicon. The book presents current, innovative and prospective applications and products based on nanosilico...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Nayfeh, Munir H. (Munir Hasan) (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam, Netherlands : Elsevier, [2018]
Colección:Micro & nano technologies.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Cover; Title page; Copyright page; Contents; Preface; Chapter 1
  • Atom-by-Atom Manufacturing: The Birth of Nanotechnology; 1.1
  • Feynman's vision; 1.2
  • Feynman challenge funding; 1.3
  • Drawbacks of atom-by-atom (ABA); 1.4
  • Parallel manufacturing solution by K. Eric Drexler; References; Further Readings; Chapter 2
  • Seeing and Detecting Atoms in a Gas Using Light; 2.1
  • Picking stationary atoms with laser light; 2.2
  • Counting sodium atoms using resonance light (fluorescence) spectroscopy; 2.3
  • Detection of single atoms using light-induced electron resonance ionization
  • 2.3.1
  • Stopping/Cooling Atoms2.3.2
  • Atom-by-Atom Fabrication; References; Chapter 3
  • Trapping and Stopping/Cooling of Atoms, Particles, and Bio-components Using Laser Light; 3.1
  • Solar and laser sails; 3.2
  • Stopping atoms: atom trap (magneto-optical trap); 3.3
  • Trapping nano- to micro-particles (push-pull forces); 3.4
  • Trapping of ultrasmall nanoparticles: nano (trap) tweezers; 3.4.1
  • Higher NA; 3.4.2
  • Plasmonic (Metal) Nanolenses; 3.5
  • Thermal trapping of particles; References; Chapter 4
  • Seeing Atoms and Clusters onSurfaces
  • 4.1
  • Seeing nanoparticles and what's inside with free electrons4.1.1 Transmission Electron Microscope (TEM); 4.2
  • Seeing atoms, molecules, and nanoparticles on surfaces using tunneling electrons (STM Imaging); 4.2.1
  • Nanoparticles; 4.2.2 Spectroscopy Using Tunneling Scanning (STS): I-V Spectroscopy; 4.3
  • Mechanical atomic imaging (atomic force microscope
  • AFM); 4.3.1 Imaging Nanoparticles; 4.4
  • Unveiling the surface topography: the oscillating cantilever; 4.5
  • Variety of tip-based imaging; 4.5.1 Conductive AFM (CAFM); 4.5.2 AFM Tip with Single Molecule Apex
  • 4.5.3 Magnetic Force Microscopy4.5.4 Near-Field Scanning Optical Microscopy (NSOM); 4.5.5 Scanning Electrochemical Microscopy (SECM) Ultra-Microelectrode (UME) Tip; 4.6
  • Tip preparation and effect of shape; 4.6.1 Metal Tips for STM; 4.6.2 Platinum-Iridium or Gold Tips; 4.6.3 Multiple Whisker Tips; 4.6.4 Solid Carbon Cone Tapping Mode; 4.6.5 Metal-Coated Silicon AFM Tips; 4.6.6 Carbon Nanotube Tips; References; Chapter 5
  • Manipulation and Patterning of Surfaces (Nanolithography); 5.1
  • Standard visible and near UV photolithography; 5.2
  • Current photolithography (shorter wavelength)
  • 5.2.1
  • Wavelength-Independent Resolution5.2.2
  • Immersion Lithography; 5.2.2.1
  • Double Patterning: Increasing Feature Density; 5.3
  • New generation of lithography (NGL); 5.3.1
  • Extreme Ultraviolet Lithography (EUV-Lithography); 5.3.2
  • X-Ray Lithography; 5.3.3
  • Electron-Beam Lithography; 5.3.4
  • Focused Ion Beam (FIB) Lithography; 5.4
  • Variety of non-conventional lithography; 5.4.1
  • Nanoimprint (Mold) Lithography; 5.4.2
  • Plasmonic-Assisted Lithography; 5.4.2.1
  • Plasmonic Hyperlens-Based Lithography; 5.4.3
  • Laser Interference Lithography; 5.4.4
  • Nanosphere Shadow Lithography
  • 5.4.5
  • Resists