Cargando…

Intracranial aneurysms /

Intracranial aneurysm result from complex interactions between cerebrovascular anatomy, vascular injury, and adaptive remodeling of the arterial wall and represent a cerebrovascular disorder with the potential for substantial morbidity and mortality. Most intracranial aneurysms occur in the larger a...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Ringer, Andrew J. (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London : Academic Press, An imprint of Elsevier, [2018]
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Front Cover; Intracranial Aneurysms; Copyright; Contents; Contributors; Preface; Reference; Companion Web Site; Acknowledgments; Part I: Background; Chapter 1: Cerebrovascular Embryology and Implications for the Pathogenesis of Cerebral Aneurysms; 1.1. Vasculogenesis and Angiogenesis; 1.1.1. Vasculogenesis; 1.1.2. Angiogenesis; 1.2. Embryology of the Cerebral Arterial Circulation; 1.2.1. Origins of the Embryonic Circulatory System; 1.2.2. Development of the Carotid Circulation; 1.2.3. Development of the Vertebrobasilar Circulation; 1.3. Mural Structure of Cerebral Arteries
  • 1.4. Cerebral Arterial Bifurcations as an Anatomical Vulnerability1.5. Anatomical Variants of Persistent Fetal Circulation (Fig. 1.2); 1.5.1. Fetal PCA; 1.5.2. Primitive Carotid-Vertebrobasilar Anastomoses; 1.5.3. Persistent Trigeminal Artery; 1.5.4. Persistent Otic Artery; 1.5.5. Persistent Hypoglossal Artery; 1.5.6. Proatlantal Intersegmental Artery; 1.5.7. Congenital Absence of the ICA; 1.5.7.1. Arterial Fenestrations; 1.6. Conclusions; References; Chapter 2: Biology of Cerebral Aneurysm Formation, Growth, and Rupture; 2.1. Introduction; 2.2. Formation of Intracranial Aneurysms
  • 2.2.1. Epidemiological Risk Factors2.2.2. Genetic Factors; 2.2.3. Structural and Molecular Changes; 2.3. Atherosclerosis and Saccular Intracranial Aneurysms; 2.4. Hemodynamics and Biology; 2.5. Aneurysm Growth; 2.6. Aneurysm Wall Inflammation; 2.7. Aneurysm Rupture; 2.7.1. Risk Factors for Aneurysm Rupture; 2.7.2. Patient-Related Risk Factors; 2.7.3. Aneurysm-Related Risk Factors; 2.7.4. Triggers of Aneurysm Rupture; References; Chapter 3: Experimental Aneurysm Models; 3.1. Concepts for Models; 3.1.1. Selection of an Animal Species; 3.1.2. The ``Ideal�� Model; 3.1.3. Histology of Aneurysms
  • 3.2. Early Models and History3.3. Classification of Models; 3.3.1. Rabbit Elastase Model; 3.3.2. Surgical Models; 3.3.2.1. Animal Selection; 3.3.2.2. Types of Anastomosis (Fig. 3.3); 3.3.2.3. General Principles of Surgical Technique; 3.3.2.4. Complications; 3.3.2.5. Other Technical Considerations; 3.3.3. Bifurcation Models; 3.3.3.1. A Bifurcation Aneurysm Model for the Future; 3.3.4. Murine Models; 3.3.4.1. Mouse Intracranial Elastase Model; 3.3.4.2. Hashimoto Model-Renal Hypertension and Lathyrism; 3.3.4.3. Ovarectomized Rat Model; 3.4. Special Aneurysm Models; 3.4.1. Aneurysms With No Neck
  • 3.4.2. FD in Aneurysm Models3.5. Limitations of Current Models; 3.6. Conclusion; References; Chapter 4: Training Standards in Neuroendovascular Surgery (NES); 4.1. Introduction; 4.2. Background; 4.3. Prerequisite Training (Reprinted with permission from Stroke 48, 2017, 2328-2325); 4.3.1. Neurosurgeons; 4.3.2. Neurologists; 4.3.3. Radiologists; 4.4. Program Requirements (Reprinted with permission from Stroke 48, 2017, 2328-2325); 4.5. Program Personnel and Resources (Reprinted with permission from Stroke 48, 2017, 2328-2325)