Cargando…

Physical fundamentals of nanomaterials /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Zhang, Bangwei, 1936- (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Oxford : Chemical Industry Press, [2018]
Colección:Micro and Nano Technologies series
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Machine generated contents note: ch. 1 Introduction
  • 1.1. Nanomaterial Age
  • 1.2. What Are Nanomaterials?
  • 1.3. History of Nanomaterial Development
  • 1.3.1. Germination Stage
  • 1.3.2. Preliminary Preparation Stage
  • 1.3.3. Rapid-Development Stage
  • 1.3.4. Industrial and Commercial Application Stage
  • 1.4. Importance of Nanomaterials
  • 1.4.1. Nanotechnology Programs of Leading Countries
  • 1.4.2. Nanotechnology Investment Among Leading Countries
  • 1.4.3. Analysis of the Importance of Nanotechnology
  • 1.5. Potential Problems of Nanomaterials
  • 1.6. Purpose of This Book: Fundamentals of Nanomaterial Physics
  • References
  • ch. 2 Principles, Methods, Formation Mechanisms, and Structures of Nanomaterials Prepared via Gas-Phase Processes
  • 2.1. Principles of Physical Vapor Deposition
  • 2.1.1. Nucleation
  • 2.1.2. Growth
  • 2.2. Physical Vapor Deposition
  • 2.2.1. Electrical Resistance Heating Method
  • 2.2.2. Plasma Heating Method
  • 2.2.3. Laser Heating Method
  • 2.3. Chemical Vapor Deposition
  • 2.3.1. CVD Thermodynamics and Kinetics
  • 2.3.2. CVD Process Technology for Nanomaterial Preparation
  • 2.3.3. Catalytic CVD and CNT Preparation
  • 2.4. Filtered Cathodic Vacuum Arc Deposition
  • 2.4.1. Magnetic Filtration and FCVA Devices
  • 2.4.2. Examples of Filtered Cathodic Vacuum Deposition Films
  • 2.5. Comparison of Various Vapor Deposition Methods
  • References
  • ch. 3 Principles, Methods, Formation Mechanisms, and Structures of Nanomaterials Prepared in the Liquid Phase
  • 3.1. Precipitation
  • 3.1.1. Coprecipitation and Fractional Precipitation
  • 3.1.2. Homogeneous Precipitation
  • 3.2. Sol-Gel Method
  • 3.2.1. Sol-Gel Procedure
  • 3.2.2. Sol-Gel Reaction Mechanism
  • 3.2.3. Examples of Sol-Gel Prepared Nanomaterials
  • 3.3. Chemical-Reduction Method
  • 3.3.1. Chemical-Reduction Preparation Technology
  • 3.3.2. Chemical-Reduction Reaction Mechanisms
  • 3.3.3. Preparation of Crystalline Nanomaterials via Chemical Reduction
  • 3.4. Comparison of Various Liquid Nanoparticle Preparation Methods
  • References
  • ch. 4 Principles, Methods, Formation Mechanisms, and Structures of Nanomaterials Prepared via Solid-Phase Syntheses
  • 4.1. Mechanical Alloying
  • 4.1.1. Ball Mill
  • 4.1.2. MA Process Parameters
  • 4.1.3. MA-Prepared Nanopowder Formation Mechanisms
  • 4.1.4. Examples of Nanomaterials Synthesized via Mechanical Alloying
  • 4.2. Nanomaterial Preparation via Solid-Phase Methods
  • 4.2.1. Preparation of Bulk Nanomaterials via Solid-Phase Methods
  • 4.2.2. Amorphous Nanocrystallization
  • 4.3. Microstructures and Defects in Body Nanomaterials
  • 4.3.1. Grains in Body Nanomaterials
  • 4.3.2. Grain Boundaries in Body Nanomaterials
  • 4.3.3. Defects in Body Nanomaterials
  • References
  • ch. 5 Principles, Methods, Formation Mechanisms, and Structures of Nanomaterials Prepared via Self-Assembly
  • 5.1. What Is Self-Assembly?
  • 5.2. Types and Common Characteristics of Self-Assembly Mechanisms
  • 5.2.1. Types of Self-Assembly Mechanisms
  • 5.2.2. Common Characteristics of Self-Assembly
  • 5.3. Nanomaterial Fabrication via Self-Assembly
  • 5.3.1. Metal and Alloy Components
  • 5.3.2. Semiconductor Components
  • 5.3.3. Polymer Supermolecules and Biomolecular Components
  • 5.4. Template-Based Nanomaterial Fabrication
  • 5.4.1. Fabrication of Ordered Nanohole Templates
  • 5.4.2. Metal and Alloy Nanomaterials Prepared via Templated Self-Assembly
  • 5.4.3. Preparation of Semiconductor Nanomaterials via Self-Assembly
  • References
  • ch. 6 Mechanical Properties of Nanomaterials
  • 6.1. Elasticity of Nanomaterials
  • 6.2. Strengths, Hardnesses and Hall-Petch Relationships in Nanomaterials
  • 6.2.1. Experimental Strength Data
  • 6.2.2. Relationship Between Hardness and Hall-Petch Effects
  • 6.3. Nanomaterial Fracture and Fatigue
  • 6.3.1. Facture Strength and Toughness
  • 6.3.2. Fatigue
  • 6.4. Nanomaterial Creep and Superplasticity
  • 6.4.1. Creep
  • 6.4.2. Superplasticity
  • 6.5. Deformation and Fracture Mechanisms in Nanomaterials
  • 6.5.1. Nanomaterial Deformation Mechanisms
  • 6.5.2. Nanomaterial Fracture Mechanisms
  • References
  • ch. 7 Thermal Properties of Nanomaterials
  • 7.1. Melting Point
  • 7.1.1. Elevated and Lowered Nanomaterial Melting Points
  • 7.1.2. Nanomaterial Melting Point Simulations
  • 7.1.3. Melting Enthalpy and Entropy in Nanomaterials
  • 7.1.4. Nanoalloy Phase Diagrams
  • 7.2. Thermal Conductivity
  • 7.2.1. Experimental Measurement of Nanomaterial Thermal Conductivities
  • 7.2.2. Theoretical Simulation of Nanomaterial Thermal Conductivity
  • 7.3. Specific Heat
  • 7.3.1. Debye Temperatures of Nanomaterials
  • 7.3.2. Specific Heats of Nanomaterials
  • 7.4. Thermal Expansion
  • References
  • ch. 8 Optical Properties of Nanomaterials
  • 8.1. Light Absorption of Nanomaterials
  • 8.1.1. Instances of Light Absorption Nanomaterials
  • 8.1.2. Red- and Blueshift Phenomenon of Light Absorption
  • 8.2. Colors of Nanomaterials
  • 8.3. Light-Emission of Nanomaterials
  • 8.3.1. Quantum Yield
  • 8.3.2. Photoluminescence of Nanomaterials
  • 8.3.3. Electroluminescence of Nanomaterials
  • 8.4. Magnetooptical Properties of Nanomaterials
  • 8.4.1. Magnetooptical Effect
  • 8.4.2. Magnetooptical Effect of Metal Nanoparticles and Nanoparticle Films
  • 8.4.3. Magnetooptical Effect of Oxide Nanoparticles
  • 8.4.4. Magnetooptical Effect of Composite Structure of Amorphous Magnetic Nanoparticles
  • References
  • ch. 9 Electrical Properties of Nanometer Materials
  • 9.1. Resistivity of Nanomaterials
  • 9.1.1. Resistivity of Metal Nanomaterials
  • 9.1.2. Resistivity of Alloy Nanomaterials
  • 9.1.3. Resistivity of Semiconductor Nanomaterials
  • 9.1.4. Resistivity of Oxide Nanomaterials
  • 9.2. Theoretical Simulation of Resistivity for Nanomaterials
  • 9.2.1. FS and MS Resistivity Theory
  • 9.2.2. Theoretical Calculation of Resistivity of Metal Nanowires
  • 9.2.3. Empirical Formula for Nanomaterial Resistivity
  • 9.3. Thermoelectric Conversion Efficiency of Nanomaterials
  • 9.3.1. Thermoelectric Conversion Efficiency and Related Parameters
  • 9.3.2. Thermoelectric Conversion Efficiency of Nanomaterials
  • 9.3.3. Theoretical Calculations of Conversion Efficiency for Nanothermoelectric Materials
  • 9.4. Superconductivity of Nanomaterials
  • 9.4.1. Superconductivity of Nanoparticle
  • 9.4.2. Superconductivity of Nanofilms
  • 9.4.3. Nanowire Superconductivity
  • References
  • ch. 10 Magnetic Properties of Nanomaterials
  • 10.1. Magnetic Moment of Nanometer Magnetic Materials
  • 10.1.1. Magnetic Moment of 3D Atomic Group Ferromagnetic Metals
  • 10.1.2. Magnetic Moment of 3D Ferromagnetic Clusters of Superlattice
  • 10.1.3. Magnetic Moments of Nonferromagnetic Three Metal Clusters
  • 10.2. Curie Temperature of Nanomagnetic Materials
  • 10.2.1. Reduction of Curie Temperature
  • 10.2.2. Curie Temperature of Superlattice
  • 10.3. Magnetization and Coercivity of Nanometer Magnetic Materials
  • 10.3.1. Magnetization
  • 10.3.2. Coercivity
  • 10.4. Magnetoresistance and Giant Magnetoresistance of Nanometer Magnetic Materials
  • 10.4.1. Magnetoresistance and Anisotropic Magnetoresistance
  • 10.4.2. Magnetoresistance of Nanometer Manganese Perovskite
  • 10.4.3. Giant Magnetoresistance
  • References.