Physical fundamentals of nanomaterials /
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Oxford :
Chemical Industry Press,
[2018]
|
Colección: | Micro and Nano Technologies series
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Machine generated contents note: ch. 1 Introduction
- 1.1. Nanomaterial Age
- 1.2. What Are Nanomaterials?
- 1.3. History of Nanomaterial Development
- 1.3.1. Germination Stage
- 1.3.2. Preliminary Preparation Stage
- 1.3.3. Rapid-Development Stage
- 1.3.4. Industrial and Commercial Application Stage
- 1.4. Importance of Nanomaterials
- 1.4.1. Nanotechnology Programs of Leading Countries
- 1.4.2. Nanotechnology Investment Among Leading Countries
- 1.4.3. Analysis of the Importance of Nanotechnology
- 1.5. Potential Problems of Nanomaterials
- 1.6. Purpose of This Book: Fundamentals of Nanomaterial Physics
- References
- ch. 2 Principles, Methods, Formation Mechanisms, and Structures of Nanomaterials Prepared via Gas-Phase Processes
- 2.1. Principles of Physical Vapor Deposition
- 2.1.1. Nucleation
- 2.1.2. Growth
- 2.2. Physical Vapor Deposition
- 2.2.1. Electrical Resistance Heating Method
- 2.2.2. Plasma Heating Method
- 2.2.3. Laser Heating Method
- 2.3. Chemical Vapor Deposition
- 2.3.1. CVD Thermodynamics and Kinetics
- 2.3.2. CVD Process Technology for Nanomaterial Preparation
- 2.3.3. Catalytic CVD and CNT Preparation
- 2.4. Filtered Cathodic Vacuum Arc Deposition
- 2.4.1. Magnetic Filtration and FCVA Devices
- 2.4.2. Examples of Filtered Cathodic Vacuum Deposition Films
- 2.5. Comparison of Various Vapor Deposition Methods
- References
- ch. 3 Principles, Methods, Formation Mechanisms, and Structures of Nanomaterials Prepared in the Liquid Phase
- 3.1. Precipitation
- 3.1.1. Coprecipitation and Fractional Precipitation
- 3.1.2. Homogeneous Precipitation
- 3.2. Sol-Gel Method
- 3.2.1. Sol-Gel Procedure
- 3.2.2. Sol-Gel Reaction Mechanism
- 3.2.3. Examples of Sol-Gel Prepared Nanomaterials
- 3.3. Chemical-Reduction Method
- 3.3.1. Chemical-Reduction Preparation Technology
- 3.3.2. Chemical-Reduction Reaction Mechanisms
- 3.3.3. Preparation of Crystalline Nanomaterials via Chemical Reduction
- 3.4. Comparison of Various Liquid Nanoparticle Preparation Methods
- References
- ch. 4 Principles, Methods, Formation Mechanisms, and Structures of Nanomaterials Prepared via Solid-Phase Syntheses
- 4.1. Mechanical Alloying
- 4.1.1. Ball Mill
- 4.1.2. MA Process Parameters
- 4.1.3. MA-Prepared Nanopowder Formation Mechanisms
- 4.1.4. Examples of Nanomaterials Synthesized via Mechanical Alloying
- 4.2. Nanomaterial Preparation via Solid-Phase Methods
- 4.2.1. Preparation of Bulk Nanomaterials via Solid-Phase Methods
- 4.2.2. Amorphous Nanocrystallization
- 4.3. Microstructures and Defects in Body Nanomaterials
- 4.3.1. Grains in Body Nanomaterials
- 4.3.2. Grain Boundaries in Body Nanomaterials
- 4.3.3. Defects in Body Nanomaterials
- References
- ch. 5 Principles, Methods, Formation Mechanisms, and Structures of Nanomaterials Prepared via Self-Assembly
- 5.1. What Is Self-Assembly?
- 5.2. Types and Common Characteristics of Self-Assembly Mechanisms
- 5.2.1. Types of Self-Assembly Mechanisms
- 5.2.2. Common Characteristics of Self-Assembly
- 5.3. Nanomaterial Fabrication via Self-Assembly
- 5.3.1. Metal and Alloy Components
- 5.3.2. Semiconductor Components
- 5.3.3. Polymer Supermolecules and Biomolecular Components
- 5.4. Template-Based Nanomaterial Fabrication
- 5.4.1. Fabrication of Ordered Nanohole Templates
- 5.4.2. Metal and Alloy Nanomaterials Prepared via Templated Self-Assembly
- 5.4.3. Preparation of Semiconductor Nanomaterials via Self-Assembly
- References
- ch. 6 Mechanical Properties of Nanomaterials
- 6.1. Elasticity of Nanomaterials
- 6.2. Strengths, Hardnesses and Hall-Petch Relationships in Nanomaterials
- 6.2.1. Experimental Strength Data
- 6.2.2. Relationship Between Hardness and Hall-Petch Effects
- 6.3. Nanomaterial Fracture and Fatigue
- 6.3.1. Facture Strength and Toughness
- 6.3.2. Fatigue
- 6.4. Nanomaterial Creep and Superplasticity
- 6.4.1. Creep
- 6.4.2. Superplasticity
- 6.5. Deformation and Fracture Mechanisms in Nanomaterials
- 6.5.1. Nanomaterial Deformation Mechanisms
- 6.5.2. Nanomaterial Fracture Mechanisms
- References
- ch. 7 Thermal Properties of Nanomaterials
- 7.1. Melting Point
- 7.1.1. Elevated and Lowered Nanomaterial Melting Points
- 7.1.2. Nanomaterial Melting Point Simulations
- 7.1.3. Melting Enthalpy and Entropy in Nanomaterials
- 7.1.4. Nanoalloy Phase Diagrams
- 7.2. Thermal Conductivity
- 7.2.1. Experimental Measurement of Nanomaterial Thermal Conductivities
- 7.2.2. Theoretical Simulation of Nanomaterial Thermal Conductivity
- 7.3. Specific Heat
- 7.3.1. Debye Temperatures of Nanomaterials
- 7.3.2. Specific Heats of Nanomaterials
- 7.4. Thermal Expansion
- References
- ch. 8 Optical Properties of Nanomaterials
- 8.1. Light Absorption of Nanomaterials
- 8.1.1. Instances of Light Absorption Nanomaterials
- 8.1.2. Red- and Blueshift Phenomenon of Light Absorption
- 8.2. Colors of Nanomaterials
- 8.3. Light-Emission of Nanomaterials
- 8.3.1. Quantum Yield
- 8.3.2. Photoluminescence of Nanomaterials
- 8.3.3. Electroluminescence of Nanomaterials
- 8.4. Magnetooptical Properties of Nanomaterials
- 8.4.1. Magnetooptical Effect
- 8.4.2. Magnetooptical Effect of Metal Nanoparticles and Nanoparticle Films
- 8.4.3. Magnetooptical Effect of Oxide Nanoparticles
- 8.4.4. Magnetooptical Effect of Composite Structure of Amorphous Magnetic Nanoparticles
- References
- ch. 9 Electrical Properties of Nanometer Materials
- 9.1. Resistivity of Nanomaterials
- 9.1.1. Resistivity of Metal Nanomaterials
- 9.1.2. Resistivity of Alloy Nanomaterials
- 9.1.3. Resistivity of Semiconductor Nanomaterials
- 9.1.4. Resistivity of Oxide Nanomaterials
- 9.2. Theoretical Simulation of Resistivity for Nanomaterials
- 9.2.1. FS and MS Resistivity Theory
- 9.2.2. Theoretical Calculation of Resistivity of Metal Nanowires
- 9.2.3. Empirical Formula for Nanomaterial Resistivity
- 9.3. Thermoelectric Conversion Efficiency of Nanomaterials
- 9.3.1. Thermoelectric Conversion Efficiency and Related Parameters
- 9.3.2. Thermoelectric Conversion Efficiency of Nanomaterials
- 9.3.3. Theoretical Calculations of Conversion Efficiency for Nanothermoelectric Materials
- 9.4. Superconductivity of Nanomaterials
- 9.4.1. Superconductivity of Nanoparticle
- 9.4.2. Superconductivity of Nanofilms
- 9.4.3. Nanowire Superconductivity
- References
- ch. 10 Magnetic Properties of Nanomaterials
- 10.1. Magnetic Moment of Nanometer Magnetic Materials
- 10.1.1. Magnetic Moment of 3D Atomic Group Ferromagnetic Metals
- 10.1.2. Magnetic Moment of 3D Ferromagnetic Clusters of Superlattice
- 10.1.3. Magnetic Moments of Nonferromagnetic Three Metal Clusters
- 10.2. Curie Temperature of Nanomagnetic Materials
- 10.2.1. Reduction of Curie Temperature
- 10.2.2. Curie Temperature of Superlattice
- 10.3. Magnetization and Coercivity of Nanometer Magnetic Materials
- 10.3.1. Magnetization
- 10.3.2. Coercivity
- 10.4. Magnetoresistance and Giant Magnetoresistance of Nanometer Magnetic Materials
- 10.4.1. Magnetoresistance and Anisotropic Magnetoresistance
- 10.4.2. Magnetoresistance of Nanometer Manganese Perovskite
- 10.4.3. Giant Magnetoresistance
- References.