|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
SCIDIR_on1018307011 |
003 |
OCoLC |
005 |
20231120010239.0 |
006 |
m o d |
007 |
cr cnu|||unuuu |
008 |
180108s2018 ne ob 001 0 eng d |
040 |
|
|
|a N$T
|b eng
|e rda
|e pn
|c N$T
|d N$T
|d EBLCP
|d YDX
|d UIU
|d OCLCF
|d D6H
|d NJR
|d UAB
|d INT
|d MERER
|d AU@
|d OCLCQ
|d OCLCO
|d WYU
|d U3W
|d OCLCQ
|d LVT
|d OCLCQ
|d LQU
|d UKMGB
|d S2H
|d VT2
|d OCLCQ
|d OCLCO
|d K6U
|d OCLCQ
|d SFB
|d OCLCQ
|d OCLCO
|
015 |
|
|
|a GBB7O2240
|2 bnb
|
016 |
7 |
|
|a 018646439
|2 Uk
|
019 |
|
|
|a 1018459698
|a 1105194767
|a 1105564181
|a 1229741498
|a 1235836937
|
020 |
|
|
|a 9780128111819
|q (electronic bk.)
|
020 |
|
|
|a 012811181X
|q (electronic bk.)
|
020 |
|
|
|z 9780128111802
|
020 |
|
|
|z 0128111801
|
035 |
|
|
|a (OCoLC)1018307011
|z (OCoLC)1018459698
|z (OCoLC)1105194767
|z (OCoLC)1105564181
|z (OCoLC)1229741498
|z (OCoLC)1235836937
|
050 |
|
4 |
|a QD509.M46
|
072 |
|
7 |
|a NAT
|x 030000
|2 bisacsh
|
072 |
|
7 |
|a SCI
|x 048000
|2 bisacsh
|
082 |
0 |
4 |
|a 549/.5
|2 23
|
245 |
0 |
0 |
|a Magnetic, ferroelectric, and multiferroic metal oxides /
|c edited by Biljana D. Stojanovic.
|
264 |
|
1 |
|a Amsterdam, Netherlands :
|b Elsevier,
|c [2018]
|
300 |
|
|
|a 1 online resource
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Metal oxides series
|
588 |
0 |
|
|a Vendor-supplied metadata.
|
504 |
|
|
|a Includes bibliographical references and index.
|
505 |
0 |
|
|a Front Cover -- Magnetic, Ferroelectric, and Multiferroic Metal Oxides -- Copyright Page -- Contents -- List of contributors -- About the series editor -- About the editor -- Preface to the series -- Preface -- Introduction to ferroics and multiferroics: Essential background -- References -- I. Ferroelectric Metal Oxides -- I. Ferroelectrics: Fundamentals -- 1 General view of ferroelectrics: Origin of ferroelectricity in metal oxide ferroelectrics and ferroelectric properties -- 1.1 Introduction -- 1.2 Macroscopic phenomenological theory of ferroelectric phase transitions -- 1.3 Microscopic theory of ferroelectrics: the mean field -- 1.4 Dynamic properties of ferroelectrics: theory -- 1.5 Raman, infrared, and dielectric spectroscopy of ferroelectrics -- 1.6 Other spectroscopic techniques -- 1.7 The size and mechanical strain effect in ferroelectric ceramics and thin films -- 1.8 Summary -- References -- 2 Perovskite and Aurivillius: Types of ferroelectric metal oxides -- 2.1 Introduction -- 2.2 Perovskite structure -- 2.2.1 Substitutions in the barium titanate lattice -- 2.3 Aurivillius type of ferroelectric metal oxides -- 2.3.1 Crystal structure of the Aurivillius type of compounds -- 2.3.2 Substitution in Aurivillius type of structure -- 2.4 Summary -- References -- 3 Lead-free perovskite ferroelectrics -- 3.1 Introduction -- 3.2 Alkaline niobates -- 3.3 Alkaline bismuth titanates -- 3.4 Barium titanate-based piezoelectrics -- 3.5 Conclusions -- Acknowledgments -- References -- 4 Perovskite layer-structured ferroelectrics -- 4.1 General overview -- 4.2 Physical properties -- 4.2.1 Single and bilayer bismuth layer-structured ferroelectrics -- 4.2.2 Multilayer bismuth layer-structured ferroelectrics (m�a�#x9C;{605}3) -- 4.2.2.1 m=3 -- 4.2.2.2 m=4 -- 4.2.2.3 m�a�#x9C;{605}5 -- Acknowledgements -- References -- II. Ferroelectric Metal Oxides: Synthesis and Deposition.
|
505 |
8 |
|
|a 8.2.3 BaTiO3 thin films: Preparation techniques, the influence of intrinsic and extrinsic contributions on the functional p ... -- 8.2.4 BaTiO3 one-dimensional nanostructures: Preparation and properties -- 8.3 Recent approach to nanosized BaTiO3-based systems -- 8.3.1 Introduction -- 8.3.2 Undoped and doped BaTiO3 nanopowders prepared by wet-chemical methods -- 8.3.3 Undoped and doped nanostructured BaTiO3 ceramics consolidated by spark plasma sintering -- 8.3.4 Undoped and homovalently doped multilayer BaTiO3 thin films -- 8.3.4.1 Multilayer BaTiO3 thin films prepared by RF-magnetron sputtering -- 8.3.4.2 Multilayer Ba(Ti, Zr)O3 thin films prepared by the sol-gel method -- 8.3.5 Donor-doped BaTiO3 one-dimensional nanostructures prepared by template-mediated colloidal chemistry -- 8.4 Conclusions and trends -- Acknowledgements -- References -- 9 Ecological, lead-free ferroelectrics -- 9.1 Lead-free ferroelectrics -- 9.2 Preparation of lead-free piezoelectric ceramics with perovskite structure -- 9.3 Properties of lead-free piezoelectric ceramics -- 9.3.1 Aurivillius-type structure ceramics -- 9.3.2 Alkaline niobates -- 9.3.3 Bismuth-sodium titanates -- 9.3.4 Barium-calcium titanate-zirconate -- 9.3.5 Comparative data on properties for lead-free compositions -- 9.4 Future trends in the development of lead-free ferropiezoelectric ceramics -- References -- III. Ferroelectric Metal Oxides Application -- 10 Compositionally-graded ferroelectric ceramics and multilayers for electronic and sensing applications -- 10.1 Review of the current situation -- 10.2 Recent results -- 10.2.1 Graded bulk BST (Ba, Sr)TiO3 ceramics -- 10.2.2 Graded epitaxial multilayers -- 10.3 Conclusions and trends -- References -- 11 Review of the most common relaxor ferroelectrics and their applications -- 11.1 Introduction -- 11.2 Lead-based perovskite relaxors.
|
505 |
8 |
|
|a 11.2.1 Lead magnesium niobate (PMN) -- 11.2.2 PLZT -- 11.2.3 Lead zinc niobate (PZN) -- 11.3 Bismuth-layered perovskite relaxors -- 11.3.1 BaBi2Ta2O9 and BaBi2Nb2O9 -- 11.3.2 BaBi4Ti4O15 -- References -- Further reading -- 12 Tunable ferroelectrics for frequency agile microwave and THz devices -- 12.1 Introduction -- 12.2 Techniques for measuring permittivity at microwave frequencies -- 12.2.1 General properties of ferroelectric materials and figure of merit for microwave applications -- 12.2.2 Microwave characterization techniques of ferroelectric materials -- 12.2.2.1 Nonresonant methods -- Reflection method -- Transmission/reflection method -- 12.2.2.2 Resonant methods -- Resonator method -- Resonant-perturbation method -- Coplanar resonator method -- 12.3 Ferroelectrics at THz frequencies -- References -- 13 Piezoelectric energy harvesting device based on quartz as a power generator -- 13.1 Introduction -- 13.2 Low-power piezoelectric EH generator -- 13.2.1 The quartz -- 13.2.2 Cutting hard and brittle materials -- 13.3 Process manufacturing and functional experiments of quartz EH -- 13.4 Conclusion -- References -- 14 Nonvolatile memories -- 14.1 Introduction -- 14.2 Nonvolatile memory device operation -- 14.3 Radio frequency-sputtered CaCu3Ti4O12 thin film -- 14.4 Spin-coated CaCu3Ti4O12 thin films -- References -- II. Magnetic and Multiferroic Metal Oxides -- IV. Magnetic Oxides: Ferromagnetics, Antiferromagnetics and Ferrimagnetics -- 15 Theory of ferrimagnetism and ferrimagnetic metal oxides -- 15.1 Introduction -- 15.2 Magnetic fields in materials -- 15.3 Magnetisms -- 15.3.1 Diamagnetism -- 15.3.2 Paramagnetism -- 15.3.3 Antiferromagnetism -- 15.3.4 Ferromagnetism -- 15.3.5 Ferrimagnetism -- 15.4 Ferrites -- 15.4.1 Spinel ferrites -- 15.4.2 Garnet ferrites -- 15.4.3 Hexaferrites -- 15.5 Theoretical aspects of ferrimagnetism.
|
505 |
8 |
|
|a 15.5.1 Superexchange in spinel ferrites -- 15.5.2 Ion distribution in spinel ferrites -- 15.5.2.1 Columbus energy -- 15.5.2.2 Crystal field effect -- 15.5.2.3 Covalent effect -- 15.5.2.4 Short-range interaction energy -- 15.5.2.5 Ordering in spinel ferrites -- 15.5.2.6 Superexchange in ferrimagnetic ferrites -- 15.5.2.7 N�A�el linear model (molecular field theory) -- 15.6 Summary -- References -- 16 Metal oxide structure, crystal chemistry, and magnetic properties -- 16.1 Magnetic elements/ions -- 16.2 Magnetic oxides -- 16.3 Magnetism of magnetic oxides -- 16.3.1 Magnetism of metal-oxide nanoparticles -- 16.4 Representative structures of magnetic oxides -- 16.4.1 Spinel structure -- 16.4.2 Garnet structure -- 16.4.3 Magnetoplumbite structure -- 16.4.4 Other common structures in magnetic oxides -- References -- 17 Review of methods for the preparation of magnetic metal oxides -- 17.1 Introduction -- 17.2 Synthesis of metal magnetic oxides -- 17.2.1 Chemical methods -- 17.2.1.1 Precipitation processing -- 17.2.1.2 Microemulsion processing -- 17.2.1.3 Sol-gel method -- 17.2.1.4 Hydrothermal and solvothermal methods -- 17.2.1.5 Thermal decomposition processing -- 17.2.1.6 Sonochemical methods -- 17.2.1.7 Solution-combustion synthesis (autocombustion processing) -- 17.2.2 Physical methods -- 17.2.3 Biological methods -- 17.3 Synthesis of multiferroic materials -- 17.4 Summary -- References -- 18 Ferrite-based composites for microwave absorbing applications -- 18.1 Introduction -- 18.2 Theoretic considerations -- 18.2.1 Magnetic resonances -- 18.2.1.1 Domain wall resonance -- 18.2.1.2 Natural resonance -- 18.2.1.3 Permeability spectra of natural resonance -- Intrinsic resonant frequency (fr) -- Damping coefficient (�I�) -- Magnetic dispersions -- 18.2.2 Effects on magnetic properties of ferrite composites -- 18.2.2.1 Volume concentration.
|
520 |
8 |
|
|a Annotation
|b This volume covers the fundamental and theoretical aspects of ferroics and magnetoelectrics, their properties and important technological applications, serving as the most comprehensive, up-to-date reference on the subject.
|
650 |
|
0 |
|a Metallic oxides.
|
650 |
|
0 |
|a Iron oxides.
|
650 |
|
6 |
|a Oxydes m�etalliques.
|0 (CaQQLa)201-0026030
|
650 |
|
6 |
|a Oxydes de fer.
|0 (CaQQLa)201-0026028
|
650 |
|
7 |
|a NATURE
|x Rocks & Minerals.
|2 bisacsh
|
650 |
|
7 |
|a SCIENCE
|x Earth Sciences
|x Mineralogy.
|2 bisacsh
|
650 |
|
7 |
|a Iron oxides
|2 fast
|0 (OCoLC)fst00979307
|
650 |
|
7 |
|a Metallic oxides
|2 fast
|0 (OCoLC)fst01017898
|
700 |
1 |
|
|a Stojanovi�c, Biljana D.,
|e editor.
|
776 |
0 |
8 |
|i Print version:
|t Magnetic, ferroelectric, and multiferroic metal oxides.
|d Amsterdam, Netherlands : Elsevier, [2018]
|z 0128111801
|z 9780128111802
|w (OCoLC)1000045487
|
830 |
|
0 |
|a Metal oxides series.
|
856 |
4 |
0 |
|u https://sciencedirect.uam.elogim.com/science/book/9780128111802
|z Texto completo
|