Cargando…

Greenhouse gas balances of bioenergy systems /

"Greenhouse Gases Balance of Bioenergy Systems covers every stage of a bioenergy system, from establishment to energy delivery, presenting a comprehensive, multidisciplinary overview of all the relevant issues and environmental risks. It also provides an understanding of how these can be practi...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Thornley, Patricia (Editor ), Adams, Paul (Paul W. R.) (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London, United Kingdom : Academic Press is an imprint of Elsevier, [2018]
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Machine generated contents note: 1. Sustainable Greenhouse Gas Reductions From Bioenergy Systems
  • Climate Change: A Bioenergy Driver and Constraint / Paul Gilbert
  • 1.1. Introduction
  • 1.2. Scale of the Global Challenge
  • 1.3. Climate Policy Objectives
  • 1.4. Role of the Energy Sector
  • 1.5. Global Renewable Energy Targets
  • 1.6. Renewable Energy Targets for Europe
  • 1.7. Bioenergy
  • 1.8. Delivering Greenhouse Gas Reductions From Bioenergy
  • 1.9. Importance of Maintaining Carbon Stocks
  • 1.10. Summary
  • References
  • Further Reading
  • 2. How Policy Makers Learned to Start Worrying and Fell Out of Love With Bioenergy / Paul Adams
  • 2.1. Bioenergy as a Strategic Technology Option
  • 2.2. Policy Drive for Bioenergy
  • 2.3. Market Uptake and the Bioenergy Backlash
  • 2.4. Accounting for Carbon
  • 2.5. Direct and Indirect Land-Use Change
  • The Problem With Transport Biofuels
  • 2.6. Dynamic Changes to Forest Carbon Stocks and the Problem of Carbon Debt
  • 2.7. Meeting the Governance Challenge
  • 2.8. Conclusions
  • References
  • Further Reading
  • 3. Greenhouse Gas Balances of Bioenergy Systems: The Role of Life Cycle Assessment / Caroline M. Taylor
  • 3.1. Introduction
  • 3.2. LCA Methodology
  • 3.3. Historical Evolution, Utility, and Limitations of LCA
  • 3.4. Changing Nature of LCA
  • 3.5. Data and the Use of LCA Results as Generic Indicators
  • 3.6. Current and Future Use of LCA
  • 3.7. Conclusions
  • Acknowledgements
  • References
  • Further Reading
  • 4. Scope of System for Analysis / Patricia Thornley
  • 4.1. Introduction
  • 4.2. Scope of Bioenergy Systems
  • 4.3. Life Cycle Assessment: Goal and Scope Definition
  • 4.4. Some Key System Parameters
  • 4.5. Using This Book to Support Life Cycle Assessment Calculations
  • 4.6. Summary
  • References
  • 5. Biogenic Carbon
  • Capture and Sequestration / Gail Taylor
  • 5.1. Biogenic Carbon Capture and Potential for Storage and Sequestration
  • 5.2. Global Carbon Cycle and Biogenic Carbon in Bioenergy Systems
  • 5.3. Biomass Carbon and the Greenhouse Gas Balance of Bioenergy Systems
  • 5.4. Application to Different Biomass Types (Annual Crops, Perennial Crops, Forestry Systems)
  • 5.5. Brief Discussion of Temporal Aspects
  • References
  • Further Reading
  • 6. Greenhouse Gas (GHG) and Biogenic Volatile Organic Compound (bVOC) Fluxes Associated With Land-Use Change to Bioenergy Crops / Niall McNamara
  • 6.1. Introduction
  • 6.2. Key Greenhouse Gases and Biogenic Volatile Organic Compounds Released During Plant Growth and Biological Processes
  • 6.3. Fluxes of GHGS and bVOCs From the Differen Types of Bioenergy Crops
  • 6.4. Net Annual and Entire Lifespan Fluxes to Atmosphere of Crops
  • 6.5. Significance of Crop Management on GHGS
  • 6.6. Potential, Future, and Wider Impacts on GHG Fluxes
  • 6.7. Summary
  • References
  • Further Reading
  • 7. Biomass Harvesting, Processing, Storage, and Transport / Ian Shield
  • 7.1. Introduction
  • 7.2. Harvesting Options in Bioenergy Supply Chains
  • 7.3. Processing Options for Biomass
  • 7.4. Storage Options for Biomass
  • 7.5. Transporting Biomass
  • 7.6. Summary and Trade-Offs
  • References
  • Further Reading
  • 8. Biomass Conversion Technologies / Ian Watson
  • 8.1. Introduction
  • 8.2. Bio-chemical Conversion
  • 8.3. Thermo-Chemical Conversion
  • 8.4. Physio-Chemical Conversion
  • 8.5. Summary
  • References
  • Further Reading
  • 9. GHG Emissions From Biomethane Gas-to-Grid Injection via Anaerobic Digestion / Paul Adams
  • 9.1. Introduction
  • 9.2. Overview of GHG Emissions From Biomethane Production
  • 9.3. Feedstock Supply
  • 9.4. Biogas Production
  • 9.5. Biogas Cleaning and Upgrading
  • 9.6. Biomethane Grid Injection (Feed-In)
  • 9.7. End-Use Accounting
  • 9.8. Counterfactuals
  • 9.9. Summary
  • References
  • 10. Biodiesel from Argentinean Soy / Patricia Thornley
  • 10.1. Introduction
  • 10.2. Biodiesel Production From Argentinean Soy
  • 10.3. Accounting for Interfaces With Other Systems
  • 10.4. Consequential and Attributional Life Cycle Assessment
  • 10.5. Allocation Procedures
  • 10.6. Environmental Trade-Offs Between GHG'S and Other Environmental Impacts
  • 10.7. Summary
  • References
  • Further Reading
  • 11. Combustion of Energy Crops for District Heating / Paul Gilbert
  • 11.1. Introduction
  • 11.2. Methodology
  • 11.3. Feedstock Selection and Sewage Sludge Overview
  • 11.4. System Definition and Inventory
  • 11.5. Results for Impact Assessment and Sensitivity Analysis
  • 11.6. Discussion
  • 11.7. Conclusions
  • References
  • 12. Production of Wood Pellets from Waste Wood / Carly Whittaker
  • 12.1. Introduction
  • 12.2. Life Cycle Assessment: System Boundaries and Counterfactuals
  • 12.3. Results: Net Greenhouse Gas Emissions
  • 12.4. Conclusion
  • References
  • Further Reading
  • 13. Second-Generation Ethanol from Lignocellulose / Caroline M. Taylor
  • 13.1. Introduction
  • 13.2. Key Aspects of Lignocellulosic Ethanol Production
  • 13.3. Feedstock
  • 13.4. Conversion Technology
  • 13.5. Conclusions and Perspectives
  • Acknowledgements
  • References
  • Further Reading
  • 14. Electricity From North American Forest Residues / Mirjam Roder
  • 14.1. Introduction
  • 14.2. Wood Pellet to Electricity Supply Chain
  • 14.3. Life Cycle Assessment and Sensitivity Analysis
  • 14.4. LCA Results as Greenhouse Gas Emissions From Bioelectricity
  • 14.5. Conclusions
  • References
  • 15. Agricultural Lessons / Ian Shield
  • 15.1. Summary
  • 15.2. National Picture
  • 15.3. Livestock
  • 15.4. Land Use and Land Use Change
  • 15.5. Soils and Fertilisers
  • 15.6. Energy Consumption
  • 16. Engineering Lessons
  • Using Engineering Design to Minimise GHG Emissions From Bioenergy Production / Paul Adams
  • 16.1. Background
  • 16.2. Biomass Supply
  • Cultivation, Harvesting, Collection, and Transportation
  • 16.3. Processing Biomass
  • 16.4. Conversion Technologies
  • 16.5. End-Use
  • 16.6. Summary
  • References
  • 17. Environmental Lessons
  • Making Bioenergy System Decisions That Benefit the Environment / Patricia Thornley
  • 17.1. Environmental Context and Greenhouse Gas Mitigation
  • 17.2. Environmental Change and Climate Adaptation
  • 17.3. Environmental Impacts of Bioenergy Systems
  • 17.4. Land-Use
  • 17.5. Airborne Emissions
  • 17.6. Reconciling Trade-Offs
  • 17.7. Key Management Lessons
  • References
  • 18. Policy Lessons: The Role of Policy Regimes in Maximising GHG Savings in Bioenergy Systems / Paul Adams
  • 18.1. Introduction
  • 18.2. Recent Developments in Bioenergy Policy
  • 18.3. Review of Key Challenges in Bioenergy Policy Development
  • 18.4. Objectives of and Recommendations for Effective Policy Instruments
  • 18.5. Conclusion
  • 18.6. Summary of Possible Alternative System Scope
  • References
  • 19. Outlook-for Low Carbon Bioenergy / Paul Adams
  • 19.1. Low Carbon Bioenergy Need
  • 19.2. Low Carbon Bioenergy Potential
  • 19.3. Low Carbon Bioenergy Confidence
  • 19.4. Low Carbon Bioenergy Stakeholders
  • 19.5. Low Carbon Bioenergy Solutions
  • References.