Cargando…

Maximum principles for the Hill's equation /

Maximum Principles for the Hill's Equation focuses on the application of these methods to nonlinear equations with singularities (e.g. Brillouin-bem focusing equation, Ermakov-Pinney, .) and for problems with parametric dependence. The authors discuss the properties of the related Green's...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Cabada, Alberto
Otros Autores: Cid, Jos�e �Angel, L�opez-Somoza, Luc�ia
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London : Academic Press, �2018.
Edición:1st ed.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 SCIDIR_on1006594503
003 OCoLC
005 20231120010225.0
006 m o d
007 cr |n|||||||||
008 171018s2017 enk o 000 0 eng d
040 |a YDX  |b eng  |e pn  |c YDX  |d N$T  |d EBLCP  |d IDEBK  |d N$T  |d OCLCF  |d IDB  |d OPELS  |d UAB  |d D6H  |d SNK  |d OCLCQ  |d OTZ  |d OCLCQ  |d WYU  |d MERUC  |d LVT  |d TKN  |d MERER  |d OCLCQ  |d UKMGB  |d OCLCQ  |d S2H  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCQ  |d SFB  |d OCLCQ  |d OCLCO 
015 |a GBB7J6127  |2 bnb 
016 7 |a 018557300  |2 Uk 
019 |a 1006502592  |a 1007391266  |a 1026705529  |a 1061046466  |a 1076253044 
020 |a 9780128041260  |q (electronic bk.) 
020 |a 0128041269  |q (electronic bk.) 
020 |a 012804117X 
020 |a 9780128041178 
020 |z 9780128041178 
020 |z 012804117X 
024 3 |a 9780128041178 
035 |a (OCoLC)1006594503  |z (OCoLC)1006502592  |z (OCoLC)1007391266  |z (OCoLC)1026705529  |z (OCoLC)1061046466  |z (OCoLC)1076253044 
050 4 |a QA372 
072 7 |a MAT  |x 005000  |2 bisacsh 
072 7 |a MAT  |x 034000  |2 bisacsh 
082 0 4 |a 515/.352  |2 23 
100 1 |a Cabada, Alberto. 
245 1 0 |a Maximum principles for the Hill's equation /  |c Alberto Cabada, Jos�e �Angel Cid, Luc�ia L�opez-Somoza. 
250 |a 1st ed. 
260 |a London :  |b Academic Press,  |c �2018. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
505 0 |a Front Cover -- Maximum Principles for the Hill's Equation -- Copyright -- Contents -- About the Authors -- Preface -- Acknowledgment -- 1 Introduction -- 1.1 Hill's Equation -- 1.2 Stability in the Sense of Lyapunov -- 1.3 Floquet's Theorem for the Hill's Equation -- References -- 2 Homogeneous Equation -- 2.1 Introduction -- 2.2 Sturm Comparison Theory -- 2.3 Spectral Properties of Dirichlet Problem -- 2.4 Spectral Properties of Mixed and Neumann Problems -- 2.5 Spectral Properties of the Periodic Problem: Intervals of Stability and Instability 
505 8 |a 2.6 Relation Between Eigenvalues of Neumann, Dirichlet, Periodic, and Antiperiodic Problems References -- 3 Nonhomogeneous Equation -- 3.1 Introduction -- 3.2 The Green's Function -- 3.3 Periodic Conditions -- 3.3.1 Properties of the Periodic Green's Function -- 3.3.2 Optimal Conditions for the Periodic MP and AMP -- 3.3.3 Explicit Criteria for the Periodic AMP and MP -- 3.3.4 More on Explicit Criteria -- 3.3.5 Examples -- 3.4 Non-Periodic Conditions -- 3.4.1 Neumann Problem -- 3.4.2 Dirichlet Problem -- 3.4.3 Relation Between Neumann and Dirichlet Problems 
505 8 |a 3.4.4 Mixed Problems and their Relation with Neumann and Dirichlet Ones3.4.5 Order of Eigenvalues and Constant Sign of the Green's Function -- 3.4.6 Relations Between Green's Functions. Comparison Principles -- 3.4.7 Constant Sign for Non-Periodic Green's Functions -- 3.4.8 Global Order of Eigenvalues -- 3.4.9 Examples -- 3.5 General Second Order Equation -- 3.5.1 Periodic Problem -- 3.5.2 Non-Periodic Conditions -- References -- 4 Nonlinear Equations -- 4.1 Introduction -- 4.2 Fixed Point Theorems and Degree Theory -- 4.2.1 Leray-Schauder Degree 
505 8 |a 4.2.2 Fixed Point Theorems4.2.2.1 Application to Nonlinear Boundary Value Problems -- 4.2.3 Extremal Fixed Points -- 4.2.4 Monotone Operators -- 4.2.4.1 Existence of Solutions of Periodic Boundary Value Problems -- 4.2.5 Non-increasing Operators -- 4.2.6 Non-decreasing Operators -- 4.2.6.1 Multiplicity of Solutions -- 4.2.7 Problems with Parametric Dependence -- 4.2.7.1 Introduction and Preliminaries -- 4.2.7.2 Positive Green's Function -- Auxiliary Results -- The case �I³*>0 -- The case c(t)=0 -- 4.2.7.3 Non-negative Green's Function 
505 8 |a Applications to Singular Equations4.3 Lower and Upper Solutions Method -- 4.3.1 Well Ordered Lower and Upper Solutions -- Construction of the modi ed problem -- 4.3.2 Existence of Extremal Solutions -- 4.3.2.1 Periodic Boundary Value Problem -- 4.3.3 Non-Well-Ordered Lower and Upper Solutions -- 4.4 Monotone Iterative Techniques -- 4.4.1 Well Ordered Lower and Upper Solutions -- 4.4.2 Reversed Ordered Lower and Upper Solutions -- 4.4.2.1 Final Remarks -- References -- A Sobolev Inequalities -- References -- Glossary -- Index 
520 |a Maximum Principles for the Hill's Equation focuses on the application of these methods to nonlinear equations with singularities (e.g. Brillouin-bem focusing equation, Ermakov-Pinney, .) and for problems with parametric dependence. The authors discuss the properties of the related Green's functions coupled with different boundary value conditions. In addition, they establish the equations' relationship with the spectral theory developed for the homogeneous case, and discuss stability and constant sign solutions. Finally, reviews of present classical and recent results made by the authors and by other key authors are included. 
650 0 |a Hill's equation. 
650 6 |a �Equation de Hill.  |0 (CaQQLa)201-0117201 
650 7 |a MATHEMATICS  |x Calculus.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Mathematical Analysis.  |2 bisacsh 
650 7 |a Hill's equation  |2 fast  |0 (OCoLC)fst00956809 
700 1 |a Cid, Jos�e �Angel. 
700 1 |a L�opez-Somoza, Luc�ia. 
776 0 8 |i Print version:  |z 9780128041178  |z 012804117X  |w (OCoLC)979562421 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780128041178  |z Texto completo