Cargando…

Engineering Mathematics with Examples and Applications /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Yang, Xin-She (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: [Place of publication not identified] : Academic Press, 2016.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mi 4500
001 SCIDIR_ocn973048447
003 OCoLC
005 20231120112204.0
006 m o d
007 cr |||||||||||
008 170209s2016 xx o 000 0 eng d
040 |a NLE  |b eng  |e rda  |e pn  |c NLE  |d YDX  |d N$T  |d IDEBK  |d EBLCP  |d OPELS  |d OCLCF  |d UPM  |d XPJ  |d GZM  |d OCLCQ  |d UMR  |d MERER  |d OCLCQ  |d MERUC  |d D6H  |d U3W  |d UMR  |d OCLCQ  |d UKMGB  |d WYU  |d OCLCQ  |d CNCGM  |d LQU  |d OCLCQ  |d S2H  |d OCLCO  |d OCLCQ  |d SFB  |d OCLCQ  |d OCLCO 
016 7 |a 018223072  |2 Uk 
019 |a 967655952  |a 967682834  |a 967868624  |a 1105185094  |a 1105560984 
020 |a 9780128099025  |q (EPUB) 
020 |a 012809902X  |q (EPUB) 
020 |z 9780128097304 
020 |z 0128097302 
035 |a (OCoLC)973048447  |z (OCoLC)967655952  |z (OCoLC)967682834  |z (OCoLC)967868624  |z (OCoLC)1105185094  |z (OCoLC)1105560984 
050 4 |a TA330 
072 7 |a TEC  |x 009000  |2 bisacsh 
072 7 |a TEC  |x 035000  |2 bisacsh 
082 0 4 |a 620.001/51  |2 23 
100 1 |a Yang, Xin-She,  |e author  |u School of Science and Technology, Middlesex University, UK 
245 1 0 |a Engineering Mathematics with Examples and Applications /  |c Xin-She Yang. 
264 1 |a [Place of publication not identified] :  |b Academic Press,  |c 2016. 
300 |a 1 online resource (400 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
500 |a 1. Fundamentals 2. Complex Roots 3. Vectors and Matrices 4. Calculus 5. Fourier and Laplace Transforms 6. Statistics and Curve Fitting 7. Numerical Methods 8. Optimization 9. Advanced Topics 10. Mathematical Modeling with Case Studies. 
505 0 |a Front Cover; Engineering Mathematics with Examples and Applications; Copyright; Contents; About the Author; Preface; Acknowledgment; Part I Fundamentals; 1 Equations and Functions; 1.1 Numbers and Real Numbers; 1.2 Equations; 1.3 Functions; 1.4 Quadratic Equations; 1.5 Simultaneous Equations; Exercises; 2 Polynomials and Roots; 2.1 Index Notation; 2.2 Floating Point Numbers; 2.3 Polynomials; 2.4 Roots; Exercises; 3 Binomial Theorem and Expansions; 3.1 Binomial Expansions; 3.2 Factorials; 3.3 Binomial Theorem and Pascal's Triangle; Exercises; 4 Sequences; 4.1 Simple Sequences. 
505 8 |a 4.2 Fibonacci Sequence4.3 Sum of a Series; 4.4 In nite Series; Exercises; 5 Exponentials and Logarithms; 5.1 Exponential Function; 5.2 Logarithm; 5.3 Change of Base for Logarithm; Exercises; 6 Trigonometry; 6.1 Angle; 6.2 Trigonometrical Functions; 6.3 Sine Rule; 6.4 Cosine Rule; Exercises; Part II Complex Numbers; 7 Complex Numbers; 7.1 Why Do Need Complex Numbers?; 7.2 Complex Numbers; 7.3 Complex Algebra; 7.4 Euler's Formula; 7.5 Hyperbolic Functions; Exercises; Part III Vectors and Matrices; 8 Vectors and Vector Algebra; 8.1 Vectors; 8.2 Vector Algebra; 8.3 Vector Products. 
505 8 |a 8.4 Triple Product of Vectors Exercises; 9 Matrices; 9.1 Matrices; 9.2 Matrix Addition and Multiplication; 9.3 Transformation and Inverse; 9.4 System of Linear Equations; 9.5 Eigenvalues and Eigenvectors; Exercises; Part IV Calculus; 10 Differentiation; 10.1 Gradient and Derivative; 10.2 Differentiation Rules; 10.3 Series Expansions and Taylor Series; Exercises; 11 Integration; 11.1 Integration; 11.2 Integration by Parts; 11.3 Integration by Substitution; Exercises; 12 Ordinary Differential Equations; 12.1 Differential Equations; 12.2 First-Order Equations; 12.3 Second-Order Equations. 
505 8 |a 12.4 Higher-Order ODEs12.5 System of Linear ODEs; Exercises; 13 Partial Differentiation; 13.1 Partial Differentiation; 13.2 Differentiation of Vectors; 13.3 Polar Coordinates; 13.4 Three Basic Operators; Exercises; 14 Multiple Integrals and Special Integrals; 14.1 Line Integral; 14.2 Multiple Integrals; 14.3 Jacobian; 14.4 Special Integrals; Exercises; 15 Complex Integrals; 15.1 Analytic Functions; 15.2 Complex Integrals; Exercises; Part V Fourier and Laplace Transforms; 16 Fourier Series and Transform; 16.1 Fourier Series; 16.2 Fourier Transforms. 
505 8 |a 16.3 Solving Differential Equations Using Fourier Transforms16.4 Discrete and Fast Fourier Transforms; Exercises; 17 Laplace Transforms; 17.1 Laplace Transform; 17.2 Transfer Function; 17.3 Solving ODE via Laplace Transform; 17.4 Z-Transform; 17.5 Relationships between Fourier, Laplace and Z-transforms; Exercises; Part VI Statistics and Curve Fitting; 18 Probability and Statistics; 18.1 Random Variables; 18.2 Mean and Variance; 18.3 Binomial and Poisson Distributions; 18.4 Gaussian Distribution; 18.5 Other Distributions; 18.6 The Central Limit Theorem; 18.7 Weibull Distribution; Exercises. 
650 0 |a Engineering mathematics. 
650 6 |a Math�ematiques de l'ing�enieur.  |0 (CaQQLa)201-0021991 
650 7 |a TECHNOLOGY & ENGINEERING  |x Engineering (General)  |2 bisacsh 
650 7 |a TECHNOLOGY & ENGINEERING  |x Reference.  |2 bisacsh 
650 7 |a Engineering mathematics  |2 fast  |0 (OCoLC)fst00910601 
776 0 8 |i Print version:  |a Yang, Xin-She.  |t Engineering mathematics with examples and applications.  |d London : Academic Press, 2017  |z 0128097302  |z 9780128097304  |w (OCoLC)964303424 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780128097304  |z Texto completo