Tabla de Contenidos:
  • Machine generated contents note: pt. I Introduction to nanofiber composites
  • 1. Introduction to nanofiber composites / S. Ramakrishna
  • 1.1. Introduction
  • 1.2. Classification of nanofiber composites
  • 1.3. Properties of nanofiber composites
  • 1.4. Fabrication methods of nanofiber composites
  • 1.5. Characterization techniques of nanofiber composites
  • 1.6. Biomedical applications of nanofiber composites
  • 1.7. Clinical translational aspects of nanofiber composites
  • 1.8. Commercial aspects of nanofiber composites
  • 1.9. Concluding remarks
  • References
  • pt. II Classification of nanofiber composites
  • 2. Ceramic nanofiber composites / M. Ramalingam
  • 2.1. Introduction
  • 2.2. Types of ceramic nanofiber composite
  • 2.3. Properties of ceramic nanofiber composite
  • 2.4. Fabrication methods
  • 2.5. Biomedical applications of ceramic nanofiber composite
  • 2.6. Concluding remarks
  • References
  • 3. Polymer nanofiber composites / Y.-W. Mai
  • 3.1. Introduction
  • 3.2. Nanofiber composites using electrospinning
  • 3.3. Modified electrospinning setup for scaffold design
  • 3.4. Biofunctionalization of fibrous scaffolds
  • 3.5. Application of nanofiber composites
  • 3.6. Future perspectives of polymer nanofiber
  • Acknowledgments
  • References
  • 4. Metallic nanofiber composites / G. Manivasagam
  • 4.1. Introduction
  • 4.2. Technological aspect
  • 4.3. Metallic nanofiber composite applications in bio-medical and health care
  • 4.4. Conclusions and future perspectives
  • References
  • pt. III Properties of nanofiber composites
  • 5. Physicochemical characterization of nanofiber composites / F. Yang
  • 5.1. Introduction
  • 5.2. Physicochemical characterization at molecular level
  • 5.3. Physicochemical characterization at surface level
  • 5.4. Physicochemical characterization at materials level
  • 5.5. Conclusion
  • References
  • 6. Mechanical characterization of nanofiber composites / M. Ramalingam
  • 6.1. Introduction
  • 6.2. Nanotechnology and biomedicine
  • 6.3. Tissue engineering
  • 6.4. Scaffolds for tissue engineering
  • 6.5. Electrospinning
  • 6.6. Mechanical properties of nanofibers: case studies
  • 6.7. Conclusion and future direction
  • Acknowledgment
  • References
  • 7. Biological characterization of nanofiber composites / D. Sachdev
  • 7.1. Introduction
  • 7.2. Morphological characterization of nano fibers
  • 7.3. Biomedical applications implicated characterization
  • 7.4. Cell nanofiber scaffold interactive characterization
  • 7.5. Concluding remarks
  • References
  • pt. IV Biomedical Applications of Nanofiber Composites
  • 8. Nanofiber composites in drug delivery / S. Ramakrishna
  • 8.1. Introduction
  • 8.2. Implications of nanofiber-based DDS in health care
  • 8.3. Composite nanofibers for drug delivery
  • 8.4. Applications of composite nanofibers as DDS
  • 8.5. Future prospects
  • 8.6. Concluding remarks
  • References
  • 9. Nanofiber composites in biomolecular delivery / M. Ramalingam
  • 9.1. Introduction
  • 9.2. Importance of biomolecules in biomedical applications
  • 9.3. Composite nanofibers for biomolecular delivery
  • 9.4. Release strategy of biomolecules from composite nanofiber scaffolds
  • 9.5. Applications of composite nanofibers for biomolecular delivery
  • 9.6. Preclinical status
  • 9.7. Concluding remarks
  • References
  • 10. Nanofiber composites in gene delivery / M. Ramalingam
  • 10.1. Introduction
  • 10.2. Nanofiber composites-mediated gene delivery
  • 10.3. Fabrication methods
  • 10.4. Characterization techniques
  • 10.5. Classification
  • 10.6. Pharmacology and kinetics: gene delivery
  • 10.7. Current status
  • 10.8. Conclusion
  • References
  • 11. Nanofiber composites in skin tissue engineering / L. Rajamani
  • 11.1. Introduction
  • 11.2. Skin morphology
  • 11.3. Skin disorders
  • 11.4. Wound healing process
  • 11.5. Types of skin grafts and skin substitutes
  • 11.6. Tissue engineering
  • 11.7. Composite Nanofibrous Mats
  • 11.8. Impact of nanofibers in skin regeneration process
  • 11.9. Conclusion
  • Acknowledgment
  • References
  • 12. Nanofiber composites in bone tissue engineering / A.R. Boccaccini
  • 12.1. Introduction
  • 12.2. Topic overview
  • 12.3. Rationale for the selection of the inorganic phase for bone tissue engineering applications
  • 12.4. Electrospinning and its integration with other scaffold fabrication techniques for bone tissue engineering
  • 12.5. Three dimensional nanofibrous structures for bone tissue engineering
  • 12.6. Functionalized nanofiber composites
  • 12.7. In vivo applications of nanofiber composites for bone tissue regeneration
  • 12.8. Conclusions
  • Acknowledgements
  • References
  • 13. Nanofiber composites in cartilage tissue engineering / M. Ramalingam
  • 13.1. Introduction
  • 13.2. Microstructure of cartilage tissue
  • 13.3. Composite nanofiber for cartilage regeneration
  • 13.4. Biological relevance of composite nanofiber in cartilage regeneration
  • 13.5. Future directions and perspectives
  • References
  • 14. Nanofiber composites in tendon tissue engineering / H. EI-Hamshary
  • 14.1. Introduction
  • 14.2. Different topological structure of nanofiber for tendon tissue regeneration
  • 14.3. Development of three-dimensional scaffolds for tendon tissue engineering
  • 14.4. Mechanical simulation of scaffold constructs for tendon tissue remodeling
  • 14.5. Growth factors and stem cells strategies incorporated with nanofibers in tendon tissue engineering
  • 14.6. Conclusion
  • References
  • 15. Nanofiber composites in skeletal muscle tissue engineering / J.P. Beier
  • 15.1. Introduction
  • 15.2. Skeletal muscle anatomy
  • 15.3. Tissue engineering of skeletal muscle
  • 15.4. Three-dimensional matrices for skeletal muscle tissue engineering
  • 15.5. Polymeric Materials for electrospun nanofibers
  • 15.6. Mechanical and electrical stimulation of engineered skeletal muscle
  • 15.7. Vascularization and in vivo generation of 3D muscle constructs
  • 15.8. Future aspects
  • 15.9. Conclusion
  • References
  • 16. Nanofiber composites in neural tissue engineering / H. EI-Hamshary
  • 16.1. Introduction
  • 16.2. Composite nanofiber NGC
  • 16.3. Nanofiber NGC with regular structure
  • 16.4. Growth factor incorporated into nanofiber NTE scaffold
  • 16.5. Conductive nanofiber NGC and electrical simulation for NTE
  • 16.6. Conclusion
  • References
  • 17. Nanofiber composites in cardiac tissue engineering / D.K. Srinivasan
  • 17.1. Introduction
  • 17.2. Cardiac structure
  • 17.3. Cardiac tissue remodeling
  • 17.4. Cardiac tissue engineering
  • 17.5. Fibrous scaffolds for building of cardiac tissue
  • 17.6. Challenges and future trends in cardiac tissue engineering
  • 17.7. Conclusion
  • Acknowledgements
  • References
  • 18. Nanofiber composites in vascular tissue engineering / T. Shinoka
  • 18.1. Introduction
  • 18.2. Arterial TEVG
  • 18.3. Electrospun nanofibers for arterial TEVG
  • 18.4. Prevention of thrombosis, stenosis and calcification in arterial TEVG
  • 18.5. Current clinical status of TEVG
  • 18.6. Summary and perspectives for the future
  • 18.7. Conclusion
  • References
  • 19. Nanofiber composites in blood vessel tissue engineering / S. Ahadian
  • 19.1. Introduction
  • 19.2. Natural/synthetic nanofiber composites
  • 19.3. Synthetic/synthetic nanofiber composites
  • 19.4. Conclusion and future perspectives
  • References
  • 20. Clinical/preclinical aspects of nanofiber composites / M. Ramalingam
  • 20.1. Introduction
  • 20.2. Status of clinically relevant biomaterials
  • 20.3. Clinical and preclinical applications of nanofiber composite materials
  • 20.4. Conclusions and future remarks
  • Acknowledgements
  • References.