Loading…

Bioprocess engineering : kinetics, sustainability, and reactor design /

Bioprocess Engineering: Kinetics, Sustainability, and Reactor Design, Second Edition, provides a comprehensive resource on bioprocess kinetics, bioprocess systems, sustainability, and reaction engineering. Author Dr. Shijie Liu reviews the relevant fundamentals of chemical kinetics, batch and contin...

Full description

Bibliographic Details
Call Number:Libro Electrónico
Main Author: Liu, Shijie (Author)
Format: Electronic eBook
Language:Inglés
Published: Amsterdam ; Boston : Elsevier, [2017]
Edition:Second edition.
Subjects:
Online Access:Texto completo
Table of Contents:
  • Front Cover; Bioprocess Engineering: Kinetics, Sustainability, and Reactor Design; Copyright; Contents; Preface to the Second Edition; Preface to the First Edition; Acronyms, Abbreviations, and Symbols; Chapter 1: Introduction; 1.1. Biological Cycle; 1.2. Green Chemistry; 1.3. Sustainability; 1.4. Biorefinery; 1.5. Biotechnology and Bioprocess Engineering; 1.6. Mathematics, Biology, and Engineering; 1.7. The Story of Penicillin: The Dawn of Bioprocess Engineering; 1.8. Bioprocesses: Regulatory Constraints; 1.9. The Pillars of Bioprocess Kinetics and Systems Engineering; 1.10. Summary
  • 2.3.2.3. Deoxy Sugars2.3.3. Disaccharides; 2.3.4. Polysaccharides; 2.3.4.1. Starch; 2.3.4.2. Glycogen; 2.3.4.3. Fructan; 2.3.4.4. Cellulose; 2.3.4.5. Hemicelluloses; 2.3.5. Phytic Acid and Inositol; 2.3.6. Chitin and Chitosan; 2.3.7. Lignin; 2.3.8. Lipids, Fats, and Steroids; 2.3.9. Nucleic Acids, RNA, and DNA; 2.4. Cell Feed; 2.4.1. Macronutrients; 2.4.2. Micronutrients; 2.4.3. Growth Media; 2.5. Summary; Bibliography; Problems; Chapter 3: An Overview of Chemical Reaction Analysis; 3.1. Chemical Species; 3.2. Chemical Reactions; 3.3. Reaction Rates
  • 3.3.1. Definition of the Rate of Reaction, rA3.3.2. Rate of a Single Irreversible Reaction; 3.3.3. Rate of an Elementary Reaction; 3.3.4. Rate of a Reversible Reaction; 3.3.5. Rates of Multiple Reactions; 3.4. Approximate Reactions; 3.5. Rate Coefficients; 3.6. Stoichiometry; 3.7. Yield and Yield Factor; 3.8. Reaction Rates Near Equilibrium; 3.9. Energy Regularity; 3.10. Classification of Multiple Reactions and Selectivity; 3.11. Coupled Reactions; 3.12. Reactor Mass Balances; 3.13. Reaction Energy Balances; 3.14. Reactor Momentum Balance; 3.15. Ideal Reactors
  • 3.16. Bioprocess Systems Optimization3.17. Summary; Bibliography; Problems; Chapter 4: Batch Reactor; 4.1. Isothermal Batch Reactors; 4.2. Batch Reactor Sizing; 4.3. Nonisothermal Batch Reactors; 4.4. Numerical Solutions of Batch Reactor Problems; 4.5. Graphical Solutions of Batch Reactor Sizing From Concentration Profiles; 4.6. Summary; Bibliography; Problems; Chapter 5: Ideal Flow Reactors; 5.1. Flow Rate, Residence Time, Space Time, Space Velocity, and Dilution Rate; 5.2. Plug Flow Reactor; 5.3. Gasification and Fischer-Tropsch Technology; 5.4. Continuous Stirred Tank Reactor and Chemostat