Microwave wireless communications : from transistor to system level /
Clasificación: | Libro Electrónico |
---|---|
Autores principales: | , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Amsterdam :
Elsevier,
[2016]
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Front Cover
- Microwave Wireless Communications: From Transistor to System Level
- Copyright
- Dedication
- Contents
- Contributors
- About the Editors
- Foreword by Charles F. Campbell
- Foreword by Ramesh K. Gupta
- Preface
- Chapter 1: Microwave transistor modeling
- 1.1. Introduction
- 1.2. Microwave Transistor Technologies
- 1.3. Transistor Modeling
- 1.4. Small-Signal Modeling
- 1.5. Noise Modeling
- 1.6. Large-Signal Modeling
- References
- Chapter 2: Radio frequency and microwave linear and nonlinear characterization
- 2.1. Introduction
- 2.2. The scattering parameters
- 2.3. Scattering parameter measurements
- 2.4. Two-Port VNAs
- 2.5. Downconversion techniques
- 2.6. Two-Port VNA calibration
- 2.7. Load- and source-pull characterization
- 2.7.1. Scalar Systems
- 2.7.2. Vectorial Systems
- 2.8. System-level characterization
- 2.8.1. Measurement System Synchronization
- References
- Chapter 3: Nonlinear analysis and design of oscillator circuits
- 3.1. Introduction
- 3.2. Basic Concepts in Oscillator Circuits
- 3.2.1. Oscillation Mechanism: Start-Up and Steady-State
- 3.2.2. Invariance Versus Phase Shifts
- 3.2.3. Impact of the Harmonic Content
- 3.2.4. Phase-Space Representation
- 3.3. Negative Resistance Through Gain and Feedback
- 3.4. General Stability Analysis of Oscillator Circuits
- 3.4.1. Stability of the dc Solution
- 3.4.2. Stability of the Periodic Oscillation
- 3.4.3. Approximate Stability Analysis of the Periodic Solution
- 3.5. Initial Linear Design to Fulfill the Oscillation Start-Up Conditions
- 3.6. Oscillator Design With Harmonic-Balance Simulations
- 3.6.1. Harmonic Balance
- 3.6.2. Use of an Auxiliary Generator for Oscillator Analysis and Synthesis
- 3.7. Stability Analysis
- 3.7.1. Local Stability Analysis
- 3.7.2. Bifurcations
- 3.7.2.1. Bifurcation from a dc solution.
- 3.7.2.2. Bifurcations from a periodic solution
- Turning point
- Hopf bifurcation
- Flip bifurcation
- 3.8. Phase Noise
- 3.8.1. Frequency-Domain Techniques
- 3.8.2. Phase-Noise Dynamics
- 3.8.3. Conversion Matrix Approach
- 3.8.4. Carrier-Modulation Approach
- 3.8.5. Near Carrier Spectrum Due to Phase Noise
- 3.8.6. Application Example
- 3.9. Reduced-Order Models for Oscillator Circuits
- 3.9.1. Inner Level
- 3.9.2. Outer Level
- 3.10. Phase-Locked Loops
- 3.10.1. VCO Formulation
- 3.10.2. PLL Formulation
- 3.10.3. Application Example
- References
- Chapter 4: Microwave power amplifiers: Design and technology
- 4.1. Introduction
- 4.2. Device Characteristics and Power Match Condition
- 4.3. Power Amplifier Figure of Merits
- 4.4. Design Strategies for High-Efficiency PAs
- 4.4.1. Tuned Load
- 4.4.2. Ideal Class F or Inverse Class F (Class F-1)
- 4.4.3. Ideal Class E
- 4.4.4. High-Frequency HT Approaches
- 4.5. Technologies for PAs Realization
- 4.5.1. Semiconductor Technologies for PAs
- 4.5.2. Hybrid Microwave PAs
- 4.5.3. Microwave Monolithic PAs
- 4.6. Linearity Issues
- 4.6.1. Systems Classification (Memoryless vs. Memory PA)
- 4.6.2. Influence of Bias Point
- 4.6.3. Influence of Harmonic Loadings
- 4.7. PA Solutions for Communication Systems: The Doherty Example
- 4.8. Analysis Issues
- References
- Chapter 5: Technology design interaction: System driven technology choices
- 5.1. Introduction
- 5.1.1. System Architecture Selection
- 5.1.2. Battery Voltage Considerations
- 5.1.3. Mid- and Low-Power Efficiency Considerations
- 5.1.4. Considerations for Average Power Tracking and ET
- 5.1.5. Multimode, Multiband PAs
- 5.1.6. Wireless LAN Amplifiers
- 5.2. Technology selection and characterization
- 5.2.1. How Do We Pick a Technology?
- 5.2.2. Overall Process Features.
- 5.2.3. Passive and Active Device Concerns
- 5.2.3.1. Capacitors
- 5.2.3.2. Resistors
- 5.2.3.3. Inductor-like devices
- 5.2.3.4. Backside via (BSV) and metallization
- 5.2.4. Device Characterization for Process Selection
- 5.3. Figure of Merit, Yield, and Cost
- 5.4. Circuit Level Design
- 5.4.1. Getting Started and Floor Planning
- 5.4.2. Packaging and System Level Impacts
- 5.5. Large-Signal Modeling and Validation at the Circuit Level
- References
- Chapter 6: Radio frequency power amplifier for wireless communication
- 6.1. Introduction
- 6.2. PA Specification
- 6.2.1. PA Output
- 6.2.2. Efficiency
- 6.2.3. Linearity
- 6.2.4. Video Bandwidth
- 6.3. PA topologies for wireless communication
- 6.3.1. Doherty PA
- 6.3.1.1. Doherty operation principle
- 6.3.1.2. Asymmetric Doherty PA
- 6.3.1.3. Digital Doherty PA
- 6.3.1.4. Broadband Doherty PA
- 6.3.2. ET PA
- 6.3.2.1. EER and ET
- 6.3.2.2. RF PA for ET
- 6.3.2.3. Supply modulator for ET
- 6.3.3. LINC PA
- 6.3.3.1. LINC principle
- 6.3.3.2. Combining structures for LINC
- 6.3.3.3. Multilevel LINC
- 6.3.3.4. Mode-multiplexing LINC
- 6.3.3.5. Power recycling LINC
- 6.4. Transistor technology for PA design
- 6.4.1. Silicon CMOS Technologies
- 6.4.2. The GaAs HBT
- 6.4.3. The GaN High Electron-Mobility Transistor
- 6.5. Broadband and multiband PA
- 6.5.1. Broadband PA Design
- 6.5.1.1. Broadband impedance matching networks
- 6.5.1.2. Broadband bias networks
- 6.5.2. Multiband PA Design
- 6.5.2.1. Multiband PAs
- 6.5.2.2. Analysis of concurrent multiband PAs
- 6.5.2.3. Intermodulation impedance matching
- References
- Chapter 7: Nonlinear applications at the transmitter system level
- 7.1. Introduction
- 7.2. Power Dissipation Versus Linearity
- 7.2.1. Power Along the Characteristic Curves
- 7.2.2. Knee Voltage Profiles.
- 7.2.3. Load Line Selection for Efficiency
- 7.2.4. Variable Power Supply Option
- 7.3. PA Operating Modes With a Variable Supply Voltage
- 7.3.1. Booth Chart Fundamentals
- 7.3.2. L-Mode Operation
- 7.3.3. C-Mode Operation
- 7.3.4. P-Mode Operation
- 7.4. Signal Linearity and Accuracy Requirements
- 7.5. DPS Transmitter Principles
- 7.5.1. ET: L-Mode Only
- 7.5.2. DPS Characterization
- 7.5.3. Polar Modulation: C-Mode and P-Mode Only
- 7.5.4. Transistor Types With Best Performance
- References
- Chapter 8: System-level nonideality characterization for compensation
- 8.1. Introduction
- 8.2. Baseband Characterization and Modeling
- 8.3. System-Level Nonideality
- 8.3.1. Nonlinearity
- 8.3.1.1. Nonlinearity in baseband
- 8.3.1.2. Weak versus hard nonlinearity
- 8.3.1.3. Harmonic generation and intermodulation
- 8.3.2. Memory Effects
- 8.3.3. IQ Imbalance
- 8.4. Characterization Approaches
- 8.4.1. Memoryless Characterization
- 8.4.2. Quasimemoryless Characterization
- 8.4.3. Characterization With Volterra Models
- 8.4.3.1. Identification of volterra-based models
- 8.4.3.2. Effect of cross terms
- 8.4.3.3. Including even-order terms
- 8.4.4. Characterization With Various Excitations
- 8.4.4.1. Two-tone characterization
- 8.4.4.2. Multisine characterization
- 8.4.4.3. Characterization with real modulation
- 8.4.5. Characterization With X-Parameters
- 8.5. Characterization With Offset Multisine Excitation
- 8.5.1. Theory of Multisine Offsetting
- 8.5.2. Spectrum Plots With Offset Multisine Excitation
- 8.5.3. IM3 Profile
- 8.5.4. Focused Application: Memory Effects Characterization
- 8.6. Characterization and Modeling of Transmitter Emission Into Receive Band
- 8.6.1. Measuring the Deterministic Components of RxBN
- 8.6.2. Identification of Nonlinearity Orders
- 8.6.3. Modeling of Deterministic RxBN.
- 8.7. From Characterization to System-Level Compensation
- References
- Index
- Back Cover.