Cargando…

Microwave wireless communications : from transistor to system level /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Raffo, Antonio (Autor), Crupi, Giovanni (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam : Elsevier, [2016]
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Front Cover
  • Microwave Wireless Communications: From Transistor to System Level
  • Copyright
  • Dedication
  • Contents
  • Contributors
  • About the Editors
  • Foreword by Charles F. Campbell
  • Foreword by Ramesh K. Gupta
  • Preface
  • Chapter 1: Microwave transistor modeling
  • 1.1. Introduction
  • 1.2. Microwave Transistor Technologies
  • 1.3. Transistor Modeling
  • 1.4. Small-Signal Modeling
  • 1.5. Noise Modeling
  • 1.6. Large-Signal Modeling
  • References
  • Chapter 2: Radio frequency and microwave linear and nonlinear characterization
  • 2.1. Introduction
  • 2.2. The scattering parameters
  • 2.3. Scattering parameter measurements
  • 2.4. Two-Port VNAs
  • 2.5. Downconversion techniques
  • 2.6. Two-Port VNA calibration
  • 2.7. Load- and source-pull characterization
  • 2.7.1. Scalar Systems
  • 2.7.2. Vectorial Systems
  • 2.8. System-level characterization
  • 2.8.1. Measurement System Synchronization
  • References
  • Chapter 3: Nonlinear analysis and design of oscillator circuits
  • 3.1. Introduction
  • 3.2. Basic Concepts in Oscillator Circuits
  • 3.2.1. Oscillation Mechanism: Start-Up and Steady-State
  • 3.2.2. Invariance Versus Phase Shifts
  • 3.2.3. Impact of the Harmonic Content
  • 3.2.4. Phase-Space Representation
  • 3.3. Negative Resistance Through Gain and Feedback
  • 3.4. General Stability Analysis of Oscillator Circuits
  • 3.4.1. Stability of the dc Solution
  • 3.4.2. Stability of the Periodic Oscillation
  • 3.4.3. Approximate Stability Analysis of the Periodic Solution
  • 3.5. Initial Linear Design to Fulfill the Oscillation Start-Up Conditions
  • 3.6. Oscillator Design With Harmonic-Balance Simulations
  • 3.6.1. Harmonic Balance
  • 3.6.2. Use of an Auxiliary Generator for Oscillator Analysis and Synthesis
  • 3.7. Stability Analysis
  • 3.7.1. Local Stability Analysis
  • 3.7.2. Bifurcations
  • 3.7.2.1. Bifurcation from a dc solution.
  • 3.7.2.2. Bifurcations from a periodic solution
  • Turning point
  • Hopf bifurcation
  • Flip bifurcation
  • 3.8. Phase Noise
  • 3.8.1. Frequency-Domain Techniques
  • 3.8.2. Phase-Noise Dynamics
  • 3.8.3. Conversion Matrix Approach
  • 3.8.4. Carrier-Modulation Approach
  • 3.8.5. Near Carrier Spectrum Due to Phase Noise
  • 3.8.6. Application Example
  • 3.9. Reduced-Order Models for Oscillator Circuits
  • 3.9.1. Inner Level
  • 3.9.2. Outer Level
  • 3.10. Phase-Locked Loops
  • 3.10.1. VCO Formulation
  • 3.10.2. PLL Formulation
  • 3.10.3. Application Example
  • References
  • Chapter 4: Microwave power amplifiers: Design and technology
  • 4.1. Introduction
  • 4.2. Device Characteristics and Power Match Condition
  • 4.3. Power Amplifier Figure of Merits
  • 4.4. Design Strategies for High-Efficiency PAs
  • 4.4.1. Tuned Load
  • 4.4.2. Ideal Class F or Inverse Class F (Class F-1)
  • 4.4.3. Ideal Class E
  • 4.4.4. High-Frequency HT Approaches
  • 4.5. Technologies for PAs Realization
  • 4.5.1. Semiconductor Technologies for PAs
  • 4.5.2. Hybrid Microwave PAs
  • 4.5.3. Microwave Monolithic PAs
  • 4.6. Linearity Issues
  • 4.6.1. Systems Classification (Memoryless vs. Memory PA)
  • 4.6.2. Influence of Bias Point
  • 4.6.3. Influence of Harmonic Loadings
  • 4.7. PA Solutions for Communication Systems: The Doherty Example
  • 4.8. Analysis Issues
  • References
  • Chapter 5: Technology design interaction: System driven technology choices
  • 5.1. Introduction
  • 5.1.1. System Architecture Selection
  • 5.1.2. Battery Voltage Considerations
  • 5.1.3. Mid- and Low-Power Efficiency Considerations
  • 5.1.4. Considerations for Average Power Tracking and ET
  • 5.1.5. Multimode, Multiband PAs
  • 5.1.6. Wireless LAN Amplifiers
  • 5.2. Technology selection and characterization
  • 5.2.1. How Do We Pick a Technology?
  • 5.2.2. Overall Process Features.
  • 5.2.3. Passive and Active Device Concerns
  • 5.2.3.1. Capacitors
  • 5.2.3.2. Resistors
  • 5.2.3.3. Inductor-like devices
  • 5.2.3.4. Backside via (BSV) and metallization
  • 5.2.4. Device Characterization for Process Selection
  • 5.3. Figure of Merit, Yield, and Cost
  • 5.4. Circuit Level Design
  • 5.4.1. Getting Started and Floor Planning
  • 5.4.2. Packaging and System Level Impacts
  • 5.5. Large-Signal Modeling and Validation at the Circuit Level
  • References
  • Chapter 6: Radio frequency power amplifier for wireless communication
  • 6.1. Introduction
  • 6.2. PA Specification
  • 6.2.1. PA Output
  • 6.2.2. Efficiency
  • 6.2.3. Linearity
  • 6.2.4. Video Bandwidth
  • 6.3. PA topologies for wireless communication
  • 6.3.1. Doherty PA
  • 6.3.1.1. Doherty operation principle
  • 6.3.1.2. Asymmetric Doherty PA
  • 6.3.1.3. Digital Doherty PA
  • 6.3.1.4. Broadband Doherty PA
  • 6.3.2. ET PA
  • 6.3.2.1. EER and ET
  • 6.3.2.2. RF PA for ET
  • 6.3.2.3. Supply modulator for ET
  • 6.3.3. LINC PA
  • 6.3.3.1. LINC principle
  • 6.3.3.2. Combining structures for LINC
  • 6.3.3.3. Multilevel LINC
  • 6.3.3.4. Mode-multiplexing LINC
  • 6.3.3.5. Power recycling LINC
  • 6.4. Transistor technology for PA design
  • 6.4.1. Silicon CMOS Technologies
  • 6.4.2. The GaAs HBT
  • 6.4.3. The GaN High Electron-Mobility Transistor
  • 6.5. Broadband and multiband PA
  • 6.5.1. Broadband PA Design
  • 6.5.1.1. Broadband impedance matching networks
  • 6.5.1.2. Broadband bias networks
  • 6.5.2. Multiband PA Design
  • 6.5.2.1. Multiband PAs
  • 6.5.2.2. Analysis of concurrent multiband PAs
  • 6.5.2.3. Intermodulation impedance matching
  • References
  • Chapter 7: Nonlinear applications at the transmitter system level
  • 7.1. Introduction
  • 7.2. Power Dissipation Versus Linearity
  • 7.2.1. Power Along the Characteristic Curves
  • 7.2.2. Knee Voltage Profiles.
  • 7.2.3. Load Line Selection for Efficiency
  • 7.2.4. Variable Power Supply Option
  • 7.3. PA Operating Modes With a Variable Supply Voltage
  • 7.3.1. Booth Chart Fundamentals
  • 7.3.2. L-Mode Operation
  • 7.3.3. C-Mode Operation
  • 7.3.4. P-Mode Operation
  • 7.4. Signal Linearity and Accuracy Requirements
  • 7.5. DPS Transmitter Principles
  • 7.5.1. ET: L-Mode Only
  • 7.5.2. DPS Characterization
  • 7.5.3. Polar Modulation: C-Mode and P-Mode Only
  • 7.5.4. Transistor Types With Best Performance
  • References
  • Chapter 8: System-level nonideality characterization for compensation
  • 8.1. Introduction
  • 8.2. Baseband Characterization and Modeling
  • 8.3. System-Level Nonideality
  • 8.3.1. Nonlinearity
  • 8.3.1.1. Nonlinearity in baseband
  • 8.3.1.2. Weak versus hard nonlinearity
  • 8.3.1.3. Harmonic generation and intermodulation
  • 8.3.2. Memory Effects
  • 8.3.3. IQ Imbalance
  • 8.4. Characterization Approaches
  • 8.4.1. Memoryless Characterization
  • 8.4.2. Quasimemoryless Characterization
  • 8.4.3. Characterization With Volterra Models
  • 8.4.3.1. Identification of volterra-based models
  • 8.4.3.2. Effect of cross terms
  • 8.4.3.3. Including even-order terms
  • 8.4.4. Characterization With Various Excitations
  • 8.4.4.1. Two-tone characterization
  • 8.4.4.2. Multisine characterization
  • 8.4.4.3. Characterization with real modulation
  • 8.4.5. Characterization With X-Parameters
  • 8.5. Characterization With Offset Multisine Excitation
  • 8.5.1. Theory of Multisine Offsetting
  • 8.5.2. Spectrum Plots With Offset Multisine Excitation
  • 8.5.3. IM3 Profile
  • 8.5.4. Focused Application: Memory Effects Characterization
  • 8.6. Characterization and Modeling of Transmitter Emission Into Receive Band
  • 8.6.1. Measuring the Deterministic Components of RxBN
  • 8.6.2. Identification of Nonlinearity Orders
  • 8.6.3. Modeling of Deterministic RxBN.
  • 8.7. From Characterization to System-Level Compensation
  • References
  • Index
  • Back Cover.