Cargando…

Multiphysics modeling : numerical methods and engineering applications /

Multiphysics Modeling: Numerical Methods and Engineering Applications: Tsinghua University Press Computational Mechanics Series describes the basic principles and methods for multiphysics modeling, covering related areas of physics such as structure mechanics, fluid dynamics, heat transfer, electrom...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Zhang, Qun (Autor), Cen, Song (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam : Elsevier Ltd., 2016.
Colección:Elsevier and Tsinghua University Press computational mechanics series
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Cover; Title Page; Copyright Page; Contents; Preface; Acknowledgments; 1
  • The physics models; 1.1
  • Heat flow fundamentals; 1.1.1
  • Basic equations; 1.1.2
  • Boundary conditions; 1.1.3
  • Weak forms of the thermal equation; 1.1.4
  • The shape functions for FEM; 1.1.5
  • Formulations in matrix form; 1.1.6
  • The nonlinearity in thermal analysis; 1.1.6.1
  • Material properties; 1.1.6.2
  • Convection term from computational fluid dynamics (CFD) coupling; 1.1.7
  • Stabilization method for convection-dominant transport equations; 1.1.8
  • Penalty-based thermal contact
  • 1.1.8.1
  • The matrix equation for thermal contact1.2
  • Fluid dynamics; 1.2.1
  • Basic equations for fluid flow; 1.2.2
  • Boundary and initial conditions for fluid flow; 1.2.3
  • The constitutive equation for fluid flow; 1.2.4
  • The weak forms; 1.2.4.1
  • Galerkin formulation for N-S equations; 1.2.4.1.1
  • The shape functions; 1.2.5
  • Finite element equations; 1.2.6
  • The nonlinearity and numerical challenging in CFD; 1.2.7
  • The stabilization methods; 1.2.7.1
  • SUPG and PSPG methods; 1.2.7.2
  • Discontinuity capturing operator (Tezduyard, 2012)
  • 1.2.7.3
  • Underrelaxation method and solution capping1.2.8
  • Turbulence model in CFD; 1.2.8.1
  • k-Epsilon turbulence model; 1.2.8.1.1
  • Basic equations for the k-epsilon model; 1.2.8.1.2
  • Equations in weak form; 1.2.8.1.3
  • Boundary conditions; 1.2.8.1.4
  • Equations in matrix form; 1.2.8.2
  • Wilcox k-omega turbulence model; 1.2.8.2.1
  • Basic equations for k-omega model; 1.2.8.2.2
  • Boundary conditions; 1.2.8.2.3
  • Weak forms of k-omega model; 1.2.8.2.4
  • Equations in matrix form; 1.2.8.3
  • Procedure for solving the k-epsilon/k-omega turbulence model; 1.2.8.4
  • Large eddy simulation
  • 1.2.9
  • The general transport equations1.2.9.1
  • The governing equation of the transport equation; 1.2.9.2
  • The weak form of advection diffusion equation; 1.2.9.3
  • The SUPG stabilization for the advection-dominated advection-diffusion equation; 1.2.9.3.1
  • Central differencing approach; 1.2.9.3.2
  • Upwind method for convection-dominant transport equations (first-order accuracy); 1.2.9.4
  • Discontinuity capturing operator for the advection-diffusion equation; 1.3
  • Structural mechanics; 1.3.1
  • Governing equations for structure analysis; 1.3.2
  • The equation in matrix form
  • 1.3.5.1
  • Basic equations for thin shell structure